Secondary atomization of firefighting liquid droplets by their collisions

Detalhes bibliográficos
Parent link:Atomization and Sprays
Vol. 29, iss. 5.— 2019.— [P. 429-454]
Autor principal: Solomatin Ya. S. Yaroslav Sergeevich
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Outros Autores: Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Resumo:Title screen
The results of experimental research into the interaction between droplets of various firefighting compositions colliding with each other in a gas are described. We establish the characteristics and occurrence conditions of four droplet interaction regimes: coalescence (fusion), bounce (interaction through a gas cushion between droplets without direct contact), separation (size and number of liquid fragments remain the same), and disruption (breakup of both droplets). In the experiments, droplet velocities, radii, and impact angles, as well as component composition, temperature, and surfactant proportions are varied in the wide range typical of fire containment and suppression. We determine the variation ranges of key parameters in the dimensional and dimensionless coordinate systems that provide active droplet disruption, i.e. secondary atomization. Such an atomization scheme can be arranged in any part of a combustion chamber, outside or directly within the fire zone. We use the so-called interaction regime maps based on the coordinate systems considering the dimensionless angular and linear impact parameters, as well as Weber, Reynolds, Ohnesorge, and capillary numbers. Droplet disruption enhances the endothermic phase transformations in the flame combustion zone, optimizes the use of liquid compositions, and reduces the containment time. Hence, the most valuable experimental results are the conditions determined for a several-fold increase in the number of small fragments of high-potential firefighting compositions due to colliding droplets. We show typical size distributions of the newly formed liquid fragments as compared to the initial ones.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglês
Publicado em: 2019
Assuntos:
Acesso em linha:http://dx.doi.org/10.1615/AtomizSpr.2019030766
Formato: Recurso Electrónico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662919

MARC

LEADER 00000naa0a2200000 4500
001 662919
005 20250416115437.0
035 |a (RuTPU)RU\TPU\network\34078 
035 |a RU\TPU\network\34075 
090 |a 662919 
100 |a 20201229d2019 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Secondary atomization of firefighting liquid droplets by their collisions  |f Ya. S. Solomatin, N. E. Shlegel, P. A. Strizhak 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a The results of experimental research into the interaction between droplets of various firefighting compositions colliding with each other in a gas are described. We establish the characteristics and occurrence conditions of four droplet interaction regimes: coalescence (fusion), bounce (interaction through a gas cushion between droplets without direct contact), separation (size and number of liquid fragments remain the same), and disruption (breakup of both droplets). In the experiments, droplet velocities, radii, and impact angles, as well as component composition, temperature, and surfactant proportions are varied in the wide range typical of fire containment and suppression. We determine the variation ranges of key parameters in the dimensional and dimensionless coordinate systems that provide active droplet disruption, i.e. secondary atomization. Such an atomization scheme can be arranged in any part of a combustion chamber, outside or directly within the fire zone. We use the so-called interaction regime maps based on the coordinate systems considering the dimensionless angular and linear impact parameters, as well as Weber, Reynolds, Ohnesorge, and capillary numbers. Droplet disruption enhances the endothermic phase transformations in the flame combustion zone, optimizes the use of liquid compositions, and reduces the containment time. Hence, the most valuable experimental results are the conditions determined for a several-fold increase in the number of small fragments of high-potential firefighting compositions due to colliding droplets. We show typical size distributions of the newly formed liquid fragments as compared to the initial ones. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Atomization and Sprays 
463 |t Vol. 29, iss. 5  |v [P. 429-454]  |d 2019 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a firefighting liquid compositions 
610 1 |a solutions 
610 1 |a slurries 
610 1 |a emulsions 
610 1 |a droplets 
610 1 |a collisions 
610 1 |a secondary atomization 
610 1 |a high-temperature conditions 
610 1 |a капли 
610 1 |a эмульсии 
700 1 |a Solomatin  |b Ya. S.  |g Yaroslav Sergeevich 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |3 (RuTPU)RU\TPU\pers\46675  |9 22331 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504  |9 28320 
801 2 |a RU  |b 63413507  |c 20201229  |g RCR 
850 |a 63413507 
856 4 |u http://dx.doi.org/10.1615/AtomizSpr.2019030766 
942 |c CF