Experimentally determining the effects of water droplets collision when mixing aerosol with gas flow at different heating temperatures

Dades bibliogràfiques
Parent link:Thermal Science
Vol. 24, iss. 3, pt. B.— 2020.— [P. 2243-2253]
Autor principal: Vysokomornaya O. V. Olga Valeryevna
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова), Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Altres autors: Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Sumari:Title screen
The article presents the results of experimental studies of the collisions characteristics for water droplets in an aerosol at its entry into the air counter flow. The temperature of the latter ranged from 20 °C to 500 °C. Experiments were also carried out with the flow of combustion products having a temperature of 800-850 °C. The initial dimensions (radii) of the droplets in the aerosol were 50-1000 µm. Visualization of the droplet motion in the counter flow of air and combustion products required the use of a hollow cylinder made of quartz glass with a height of 1 m and an internal diameter of 0.15 m, a cross-correlation complex and optical methods (particle image velocimetry, particle tracking velocimetry, interferometric particle imaging). The characteristics of the droplet interaction (size, velocity, total surface area of the liquid before and after) were controlled using a high-speed video camera and tracking algorithms in the TEMA AUTOMOTIVE software package. The main modes of drops interaction have been identified: bounce, coagulation, scatter, and breakup. The statistical information database has been obtained to describe the interaction modes using diagrams, taking into account the ratio of the sizes of colliding drops, velocities of their motion, and an angle between trajectories of motion. The influence of gas temperature on the probabilistic criteria of droplet collisions, as well as the integral criterion characterizing the change in the liquid surface area due to the intensification of droplet collisions in the gas medium has been established.
Idioma:anglès
Publicat: 2020
Matèries:
Accés en línia:https://doi.org/10.2298/TSCI180917103V
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662918

MARC

LEADER 00000naa0a2200000 4500
001 662918
005 20250416115017.0
035 |a (RuTPU)RU\TPU\network\34077 
090 |a 662918 
100 |a 20201229d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Experimentally determining the effects of water droplets collision when mixing aerosol with gas flow at different heating temperatures  |f O. V. Vysokomornaya, N. E. Shlegel, P. A. Strizhak 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 20 tit.] 
330 |a The article presents the results of experimental studies of the collisions characteristics for water droplets in an aerosol at its entry into the air counter flow. The temperature of the latter ranged from 20 °C to 500 °C. Experiments were also carried out with the flow of combustion products having a temperature of 800-850 °C. The initial dimensions (radii) of the droplets in the aerosol were 50-1000 µm. Visualization of the droplet motion in the counter flow of air and combustion products required the use of a hollow cylinder made of quartz glass with a height of 1 m and an internal diameter of 0.15 m, a cross-correlation complex and optical methods (particle image velocimetry, particle tracking velocimetry, interferometric particle imaging). The characteristics of the droplet interaction (size, velocity, total surface area of the liquid before and after) were controlled using a high-speed video camera and tracking algorithms in the TEMA AUTOMOTIVE software package. The main modes of drops interaction have been identified: bounce, coagulation, scatter, and breakup. The statistical information database has been obtained to describe the interaction modes using diagrams, taking into account the ratio of the sizes of colliding drops, velocities of their motion, and an angle between trajectories of motion. The influence of gas temperature on the probabilistic criteria of droplet collisions, as well as the integral criterion characterizing the change in the liquid surface area due to the intensification of droplet collisions in the gas medium has been established. 
461 |t Thermal Science 
463 |t Vol. 24, iss. 3, pt. B  |v [P. 2243-2253]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a water droplets 
610 1 |a high temperature gases 
610 1 |a collisions 
610 1 |a interactions 
610 1 |a coagulation 
610 1 |a scatter 
610 1 |a breakup 
610 1 |a капли 
610 1 |a высокотемпературные газы 
610 1 |a столкновения 
700 1 |a Vysokomornaya  |b O. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1984-  |g Olga Valeryevna  |3 (RuTPU)RU\TPU\pers\33928  |9 17501 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |3 (RuTPU)RU\TPU\pers\46675  |9 22331 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504  |9 28320 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551  |9 28348 
801 2 |a RU  |b 63413507  |c 20201229  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.2298/TSCI180917103V 
942 |c CF