Effects of target and projectile parameters on collision characteristics of water droplets

Dades bibliogràfiques
Parent link:Atomization and Sprays
Vol. 30, iss. 3.— 2020.— [P. 171-187]
Autor principal: Piskunov M. V. Maksim Vladimirovich
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Altres autors: Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Sumari:Title screen
Droplet collisions are common to many gas-liquid systems, based on spray flows injected into a gas-vapor environment. It is customary to distinguish between roles of precollision droplets (target and projectile) in such systems. As a rule, the target droplet has slower velocity than the projectile droplet or can even be stationary. Secondary atomization of droplets through their collisions with each other is a promising field of study. In particular, it is important to evaluate droplet effect roles on collision regime maps and characteristics of emerging child droplets (postcollision). This article presents experimental research on characteristics of binary collisions of water droplets that were obtained using high-speed recording. Ranges of droplet sizes, velocities, and impact angles are 0.11 mm, 0.1-5 m/s, and 0°-90°, respectively. We distinguish four interaction regimes of bounce, coalescence (CO), separation (SE), and disruption (DI). To determine child droplet characteristics, we address the DI regime in detail. The projectile droplet breaks up into many more postcollision droplets than the target droplet, with Weber (We) numbers ranging from 50 to 150. At We > 150, precollision droplet DI produces a similar number of secondary droplets. We plot separate regime maps of droplet collisions as a function of We for target and projectile droplets. Critical Weber numbers (Wecr) are determined, accounting for droplet roles. Greatest differences among Wecr are observed during transitions from CO to SE and SE to DI.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2020
Matèries:
Accés en línia:http://dx.doi.org/10.1615/AtomizSpr.2020033799
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662916

MARC

LEADER 00000naa0a2200000 4500
001 662916
005 20250416114315.0
035 |a (RuTPU)RU\TPU\network\34075 
035 |a RU\TPU\network\23273 
090 |a 662916 
100 |a 20201229d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effects of target and projectile parameters on collision characteristics of water droplets  |f M. V. Piskunov, N. E. Shlegel, P. A. Strizhak 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Droplet collisions are common to many gas-liquid systems, based on spray flows injected into a gas-vapor environment. It is customary to distinguish between roles of precollision droplets (target and projectile) in such systems. As a rule, the target droplet has slower velocity than the projectile droplet or can even be stationary. Secondary atomization of droplets through their collisions with each other is a promising field of study. In particular, it is important to evaluate droplet effect roles on collision regime maps and characteristics of emerging child droplets (postcollision). This article presents experimental research on characteristics of binary collisions of water droplets that were obtained using high-speed recording. Ranges of droplet sizes, velocities, and impact angles are 0.11 mm, 0.1-5 m/s, and 0°-90°, respectively. We distinguish four interaction regimes of bounce, coalescence (CO), separation (SE), and disruption (DI). To determine child droplet characteristics, we address the DI regime in detail. The projectile droplet breaks up into many more postcollision droplets than the target droplet, with Weber (We) numbers ranging from 50 to 150. At We > 150, precollision droplet DI produces a similar number of secondary droplets. We plot separate regime maps of droplet collisions as a function of We for target and projectile droplets. Critical Weber numbers (Wecr) are determined, accounting for droplet roles. Greatest differences among Wecr are observed during transitions from CO to SE and SE to DI. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Atomization and Sprays 
463 |t Vol. 30, iss. 3  |v [P. 171-187]  |d 2020 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a droplet collision 
610 1 |a regime map 
610 1 |a target droplet 
610 1 |a projectile droplet 
610 1 |a child droplets 
610 1 |a secondary atomization 
700 1 |a Piskunov  |b M. V.  |c specialist in the field of thermal engineering  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Maksim Vladimirovich  |3 (RuTPU)RU\TPU\pers\34151  |9 17691 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |3 (RuTPU)RU\TPU\pers\46675  |9 22331 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504  |9 28320 
801 2 |a RU  |b 63413507  |c 20201229  |g RCR 
850 |a 63413507 
856 4 |u http://dx.doi.org/10.1615/AtomizSpr.2020033799 
942 |c CF