Divergent Synthesis of Natural Benzyl Salicylate and Benzyl Gentisate Glucosides

Dettagli Bibliografici
Parent link:Journal of Natural Products
Vol. 83, iss. 10.— 2020.— [P. 3173-3180]
Enti autori: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий, Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Научно-образовательный центр Н. М. Кижнера
Altri autori: Fedorova D. D. Darjya, Nazarova D. S. Darjya, Avetyan (Avetian) D. L. David Ludvigovich, Shatskiy A. Andrey, Belyanin M. L. Maksim L'vovich, Karkas M. D. Markus, Stepanova E. V. Elena Vladimirovna
Riassunto:Title screen
Herein is reported the first total synthesis of benzyl salicylate and benzyl gentisate glucosides present in various plant species, in particular the Salix genus, such as Populus balsamifera and P. trichocarpa. The method permits the synthesis of several natural phenolic acid derivatives and their glucosides starting from salicylic or gentisic acid. The divergent approach afforded access to three different acetylated glucosides from a common synthetic intermediate. The key step in the total synthesis of naturally occurring glycosides—the selective deacetylation of the sugar moiety—was achieved in the presence of a labile benzyl ester group by employing mild deacetylation conditions. The protocol permitted synthesis of trichocarpine (4 steps, 40% overall yield), isotrichocarpine (3 steps, 51% overall yield), trichoside (6 steps, 40% overall yield), and deoxytrichocarpine (3 steps, 42% overall yield) for the first time (>95% purity). Also, the optimized mild deacetylation conditions allowed synthesis of 2-O-acetylated derivatives of all four glycosides (5–17% overall yield, 90–95% purity), which are rare plant metabolites.
Режим доступа: по договору с организацией-держателем ресурса
Lingua:inglese
Pubblicazione: 2020
Soggetti:
Accesso online:https://doi.org/10.1021/acs.jnatprod.0c00838
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662821

MARC

LEADER 00000naa0a2200000 4500
001 662821
005 20250812142830.0
035 |a (RuTPU)RU\TPU\network\33979 
035 |a RU\TPU\network\33836 
090 |a 662821 
100 |a 20201109d2020 k||y0engy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Divergent Synthesis of Natural Benzyl Salicylate and Benzyl Gentisate Glucosides  |f D. D. Fedorova, D. S. Nazarova, D. L. Avetyan (Avetian) [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Herein is reported the first total synthesis of benzyl salicylate and benzyl gentisate glucosides present in various plant species, in particular the Salix genus, such as Populus balsamifera and P. trichocarpa. The method permits the synthesis of several natural phenolic acid derivatives and their glucosides starting from salicylic or gentisic acid. The divergent approach afforded access to three different acetylated glucosides from a common synthetic intermediate. The key step in the total synthesis of naturally occurring glycosides—the selective deacetylation of the sugar moiety—was achieved in the presence of a labile benzyl ester group by employing mild deacetylation conditions. The protocol permitted synthesis of trichocarpine (4 steps, 40% overall yield), isotrichocarpine (3 steps, 51% overall yield), trichoside (6 steps, 40% overall yield), and deoxytrichocarpine (3 steps, 42% overall yield) for the first time (>95% purity). Also, the optimized mild deacetylation conditions allowed synthesis of 2-O-acetylated derivatives of all four glycosides (5–17% overall yield, 90–95% purity), which are rare plant metabolites. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Natural Products 
463 |t Vol. 83, iss. 10  |v [P. 3173-3180]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a синтез 
701 1 |a Fedorova  |b D. D.  |g Darjya 
701 1 |a Nazarova  |b D. S.  |g Darjya 
701 1 |a Avetyan (Avetian)  |b D. L.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1995-  |g David Ludvigovich  |3 (RuTPU)RU\TPU\pers\46600 
701 1 |a Shatskiy  |b A.  |g Andrey 
701 1 |a Belyanin  |b M. L.  |c organic chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1973-  |g Maksim L'vovich  |3 (RuTPU)RU\TPU\pers\31268  |9 15446 
701 1 |a Karkas  |b M. D.  |g Markus 
701 1 |a Stepanova  |b E. V.  |c chemist  |c engineer of Tomsk Polytechnic University  |f 1978-  |g Elena Vladimirovna  |3 (RuTPU)RU\TPU\pers\34245 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Научно-образовательный центр Н. М. Кижнера  |3 (RuTPU)RU\TPU\col\23556 
801 2 |a RU  |b 63413507  |c 20201109  |g RCR 
856 4 |u https://doi.org/10.1021/acs.jnatprod.0c00838 
942 |c CF