Patterning GaSe by High-Powered Laser Beams

Bibliographic Details
Parent link:ACS Omega
Vol. 5, iss. 17.— 2020.— [P. 10183–10190]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Cheshev D. L. Dmitry Leonidovich, Rodriguez (Rodriges) Contreras R. D. Raul David, Matkovic A. Aleksandar, Ruban A. S. Aleksey Sergeevich, Chen Jin-Ju, Sheremet E. S. Evgeniya Sergeevna
Summary:Title screen
We report the high-powered laser modification of the chemical, physical, and structural properties of the two-dimensional (2D) van der Waals material GaSe. Our results show that contrary to expectations and previous reports, GaSe at the periphery of a high-power laser beam does not entirely decompose into Se and Ga2O3. In contrast, we find unexpectedly that the Raman signal from GaSe gets amplified around regions where it was not expected to exist. Atomic force microscopy (AFM), dielectric force microscopy (DFM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) results show that laser irradiation induces the formation of nanoparticles. Our analyses demonstrate that, except for a fraction of Ga2Se3, these nanoparticles still belong to the GaSe phase but possess different electrical and optical properties. These changes are evidenced in the increased Raman intensity attributed to the near-resonance conditions with the Raman excitation laser. The elemental analysis of nanoparticles shows that the relative selenium content increased to as much as 70% from a 50:50 value in stoichiometric GaSe. This elemental change is related to the formation of the Ga2Se3 phase identified by Raman spectroscopy at some locations near the edge. Further, we exploit the localized high-power laser processing of GaSe to induce the formation of Ag–GaSe nanostructures by exposure to a solution of AgNO3. The selective reaction of AgNO3 with laser-irradiated GaSe gives rise to composite nanostructures that display photocatalytic activity originally absent in the pristine 2D material. The photocatalytic activity was investigated by the transformation of 4-nitrobenzenethiol to its amino and dimer forms detected in situ by Raman spectroscopy. This work improves the understanding of light–matter interaction in layered systems, offering an approach to the formation of laser-induced composites with added functionality.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2020
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/64864
https://doi.org/10.1021/acsomega.0c01079
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662549

MARC

LEADER 00000naa0a2200000 4500
001 662549
005 20250604164421.0
035 |a (RuTPU)RU\TPU\network\33704 
035 |a RU\TPU\network\33690 
090 |a 662549 
100 |a 20200902d2020 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Patterning GaSe by High-Powered Laser Beams  |f D. L. Cheshev, R. D. Rodriguez (Rodriges) Contreras, A. Matkovic [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a We report the high-powered laser modification of the chemical, physical, and structural properties of the two-dimensional (2D) van der Waals material GaSe. Our results show that contrary to expectations and previous reports, GaSe at the periphery of a high-power laser beam does not entirely decompose into Se and Ga2O3. In contrast, we find unexpectedly that the Raman signal from GaSe gets amplified around regions where it was not expected to exist. Atomic force microscopy (AFM), dielectric force microscopy (DFM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) results show that laser irradiation induces the formation of nanoparticles. Our analyses demonstrate that, except for a fraction of Ga2Se3, these nanoparticles still belong to the GaSe phase but possess different electrical and optical properties. These changes are evidenced in the increased Raman intensity attributed to the near-resonance conditions with the Raman excitation laser. The elemental analysis of nanoparticles shows that the relative selenium content increased to as much as 70% from a 50:50 value in stoichiometric GaSe. This elemental change is related to the formation of the Ga2Se3 phase identified by Raman spectroscopy at some locations near the edge. Further, we exploit the localized high-power laser processing of GaSe to induce the formation of Ag–GaSe nanostructures by exposure to a solution of AgNO3. The selective reaction of AgNO3 with laser-irradiated GaSe gives rise to composite nanostructures that display photocatalytic activity originally absent in the pristine 2D material. The photocatalytic activity was investigated by the transformation of 4-nitrobenzenethiol to its amino and dimer forms detected in situ by Raman spectroscopy. This work improves the understanding of light–matter interaction in layered systems, offering an approach to the formation of laser-induced composites with added functionality. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t ACS Omega 
463 |t Vol. 5, iss. 17  |v [P. 10183–10190]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Cheshev  |b D. L.  |c Specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 2000-  |g Dmitry Leonidovich  |3 (RuTPU)RU\TPU\pers\47385  |9 22924 
701 1 |a Rodriguez (Rodriges) Contreras  |b R. D.  |c Venezuelan physicist, doctor of science  |c Professor of Tomsk Polytechnic University  |f 1982-  |g Raul David  |3 (RuTPU)RU\TPU\pers\39942  |9 21179 
701 1 |a Matkovic  |b A.  |g Aleksandar 
701 1 |a Ruban  |b A. S.  |c geologist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Aleksey Sergeevich  |3 (RuTPU)RU\TPU\pers\34023  |9 17590 
701 0 |a Chen Jin-Ju 
701 1 |a Sheremet  |b E. S.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1988-  |g Evgeniya Sergeevna  |3 (RuTPU)RU\TPU\pers\40027  |9 21197 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537  |9 28334 
801 2 |a RU  |b 63413507  |c 20221129  |g RCR 
850 |a 63413507 
856 4 |u http://earchive.tpu.ru/handle/11683/64864 
856 4 |u https://doi.org/10.1021/acsomega.0c01079 
942 |c CF