3D pore system reconstruction using nano-scale 2D SEM images and pore size distribution analysis for intermediate rank coal matrix

Xehetasun bibliografikoak
Parent link:Fuel
Vol. 275.— 2020.— [117934, 7 p.]
Erakunde egilea: Национальный исследовательский Томский политехнический университет Институт природных ресурсов Центр подготовки и переподготовки специалистов нефтегазового дела Лаборатория геологии месторождений нефти и газа
Beste egile batzuk: Roslin A. A. Aleksandra Aleksandrovna, Pokrajac D. Dubravka, Wu Kejian, Zhou Yingfang
Gaia:Title screen
This paper comprises the analysis of scanning electron microscopy (SEM) images, nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) data to quantify the pore distribution in coal matrix. We first generate the 3D pore system in the coal matrix based on the statistics of pore distribution obtained from 2D SEM images, and then extract the pore network using the maximal ball method. The influence of the reconstructed cube size and the 2D image resolution on the accuracy of the reconstructed 3D coal sample was analysed when generate the 3D digital coal smaple. It was observed that the highest resolution which was achieved for the studied samples (6 nm) resulted in the underestimation of porosity of the studied sample, and it is recommended for future to create several models with different resolution to find the most representative model, instead of apriori using the highest possible resolution. The extracted pore network was then used to analyse pore size distribution and perform capillary pressure simulation using pore network modeling. A comparison of the pore network analysis with NMR and measured MICP data demonstrated that the pore network extraction method simplified the results of distribution and underestimated the size of elongated pores and microfractures. The simulated and laboratory measured MICP shows significant difference partically bucease the network extraction method was not suitable for the studied samples and this could be overcomed by our future study of model MICP using direct simulation method in the reconstructed 3D model.
Режим доступа: по договору с организацией-держателем ресурса
Hizkuntza:ingelesa
Argitaratua: 2020
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1016/j.fuel.2020.117934
Formatua: Baliabide elektronikoa Liburu kapitulua
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662469

MARC

LEADER 00000naa0a2200000 4500
001 662469
005 20250331163236.0
035 |a (RuTPU)RU\TPU\network\33624 
035 |a RU\TPU\network\33515 
090 |a 662469 
100 |a 20200820d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a 3D pore system reconstruction using nano-scale 2D SEM images and pore size distribution analysis for intermediate rank coal matrix  |f A. A. Roslin, D. Pokrajac, Wu Kejian, Zhou Yingfang 
203 |a Текст  |c электронный 
300 |a Title screen 
320 |a [References: 29 tit.] 
330 |a This paper comprises the analysis of scanning electron microscopy (SEM) images, nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) data to quantify the pore distribution in coal matrix. We first generate the 3D pore system in the coal matrix based on the statistics of pore distribution obtained from 2D SEM images, and then extract the pore network using the maximal ball method. The influence of the reconstructed cube size and the 2D image resolution on the accuracy of the reconstructed 3D coal sample was analysed when generate the 3D digital coal smaple. It was observed that the highest resolution which was achieved for the studied samples (6 nm) resulted in the underestimation of porosity of the studied sample, and it is recommended for future to create several models with different resolution to find the most representative model, instead of apriori using the highest possible resolution. The extracted pore network was then used to analyse pore size distribution and perform capillary pressure simulation using pore network modeling. A comparison of the pore network analysis with NMR and measured MICP data demonstrated that the pore network extraction method simplified the results of distribution and underestimated the size of elongated pores and microfractures. The simulated and laboratory measured MICP shows significant difference partically bucease the network extraction method was not suitable for the studied samples and this could be overcomed by our future study of model MICP using direct simulation method in the reconstructed 3D model. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Fuel 
463 |t Vol. 275  |v [117934, 7 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a nano-scale 
610 1 |a SEM 
610 1 |a pore size distributation 
610 1 |a coal matrix 
610 1 |a наномасштаб 
701 1 |a Roslin  |b A. A.  |c specialist in the field of petroleum engineering  |c Research Engineer, Tomsk Polytechnic University  |f 1985-  |g Aleksandra Aleksandrovna  |3 (RuTPU)RU\TPU\pers\46539  |9 22197 
701 1 |a Pokrajac  |b D.  |g Dubravka 
701 0 |a Wu Kejian 
701 0 |a Zhou Yingfang 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Институт природных ресурсов  |b Центр подготовки и переподготовки специалистов нефтегазового дела  |b Лаборатория геологии месторождений нефти и газа  |3 (RuTPU)RU\TPU\col\19125 
801 2 |a RU  |b 63413507  |c 20200820  |g RCR 
856 4 |u https://doi.org/10.1016/j.fuel.2020.117934  |z https://doi.org/10.1016/j.fuel.2020.117934 
942 |c CF