On conformal spectral gap estimates of the Dirichlet-Laplacian

Bibliographische Detailangaben
Parent link:St. Petersburg Mathematical Journal
Vol. 31, iss. 2.— 2020.— [P. 325-335]
1. Verfasser: Goldshteyn V. M. Vladimir Mikhaylovich
Körperschaft: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Weitere Verfasser: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Aleksandr Dadar-oolovich
Zusammenfassung:Title screen
We study spectral stability estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains . With the help of these estimates, we obtain asymptotically sharp inequalities of ratios of eigenvalues in the framework of the Payne-Pólya-Weinberger inequalities. These estimates are equivalent to spectral gap estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains in terms of conformal (hyperbolic) geometry.
Режим доступа: по договору с организацией-держателем ресурса
Sprache:Englisch
Veröffentlicht: 2020
Schlagworte:
Online-Zugang:https://doi.org/10.1090/spmj/1599
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662084

Ähnliche Einträge