On conformal spectral gap estimates of the Dirichlet-Laplacian
| Parent link: | St. Petersburg Mathematical Journal Vol. 31, iss. 2.— 2020.— [P. 325-335] |
|---|---|
| Автор: | |
| Співавтор: | |
| Інші автори: | , |
| Резюме: | Title screen We study spectral stability estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains . With the help of these estimates, we obtain asymptotically sharp inequalities of ratios of eigenvalues in the framework of the Payne-Pólya-Weinberger inequalities. These estimates are equivalent to spectral gap estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains in terms of conformal (hyperbolic) geometry. Режим доступа: по договору с организацией-держателем ресурса |
| Мова: | Англійська |
| Опубліковано: |
2020
|
| Предмети: | |
| Онлайн доступ: | https://doi.org/10.1090/spmj/1599 |
| Формат: | Електронний ресурс Частина з книги |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662084 |
| Резюме: | Title screen We study spectral stability estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains . With the help of these estimates, we obtain asymptotically sharp inequalities of ratios of eigenvalues in the framework of the Payne-Pólya-Weinberger inequalities. These estimates are equivalent to spectral gap estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains in terms of conformal (hyperbolic) geometry. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1090/spmj/1599 |