Chromium coatings deposited by cooled and hot target magnetron sputtering for accident tolerant nuclear fuel claddings

Bibliographic Details
Parent link:Surface and Coatings Technology
Vol. 389.— 2020.— [125618, 9 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики, Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга
Other Authors: Kashkarov E. B. Egor Borisovich, Sidelev D. V. Dmitry Vladimirovich, Rombaeva M. R. Mayya Ramazanovna, Syrtanov M. S. Maksim Sergeevich, Bleykher (Bleicher) G. A. Galina Alekseevna
Summary:Title screen
The paper describes the oxidation of E110 alloy with Cr coatings in air atmosphere at 1100 °C for 20 min. The coatings were deposited using magnetron sputtering systems of the classical construction (with cooled targets in a dual configuration) and with a single hot target. The influence of magnetron type on energetic characteristics of the deposition and coating growth was described. The as-deposited and oxidized samples were analyzed by X-ray diffraction, scanning electron microscopy and glow discharge optical emission spectroscopy. The oxidation resistance of the Cr-coated alloy is strongly affected by microstructure and thickness of the deposited films. The Cr coatings obtained by hot target sputtering had a columnar microstructure, the mass gain of these samples was decreased from 9.18 to 3.22 mg/cm2 with coating thickness from 1.8 to 4.5 µm. The minimal mass gain (2.86 mg/cm2) and the best protective properties were belong to the Cr coating with a dense microstructure and thickness of 3.1 µm that was deposited by dual magnetron sputtering. The adhesion behavior of Cr-coated Zr alloy strongly depends on oxidation states of Cr coating and Zr substrate as well as interface reactions.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2020
Subjects:
Online Access:https://doi.org/10.1016/j.surfcoat.2020.125618
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=662003

MARC

LEADER 00000naa0a2200000 4500
001 662003
005 20250421152102.0
035 |a (RuTPU)RU\TPU\network\33136 
035 |a RU\TPU\network\33044 
090 |a 662003 
100 |a 20200424d2020 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Chromium coatings deposited by cooled and hot target magnetron sputtering for accident tolerant nuclear fuel claddings  |f E. B. Kashkarov, D. V. Sidelev, M. R. Rombaeva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 47 tit.] 
330 |a The paper describes the oxidation of E110 alloy with Cr coatings in air atmosphere at 1100 °C for 20 min. The coatings were deposited using magnetron sputtering systems of the classical construction (with cooled targets in a dual configuration) and with a single hot target. The influence of magnetron type on energetic characteristics of the deposition and coating growth was described. The as-deposited and oxidized samples were analyzed by X-ray diffraction, scanning electron microscopy and glow discharge optical emission spectroscopy. The oxidation resistance of the Cr-coated alloy is strongly affected by microstructure and thickness of the deposited films. The Cr coatings obtained by hot target sputtering had a columnar microstructure, the mass gain of these samples was decreased from 9.18 to 3.22 mg/cm2 with coating thickness from 1.8 to 4.5 µm. The minimal mass gain (2.86 mg/cm2) and the best protective properties were belong to the Cr coating with a dense microstructure and thickness of 3.1 µm that was deposited by dual magnetron sputtering. The adhesion behavior of Cr-coated Zr alloy strongly depends on oxidation states of Cr coating and Zr substrate as well as interface reactions. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Surface and Coatings Technology 
463 |t Vol. 389  |v [125618, 9 p.]  |d 2020 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a chromium coatings 
610 1 |a nuclear fuel claddings 
610 1 |a zirconium alloys 
610 1 |a high-temperature oxidation 
610 1 |a hot target 
610 1 |a magnetron sputtering 
610 1 |a хромовые покрытия 
610 1 |a оболочки 
610 1 |a ядерное топливо 
610 1 |a циркониевые сплавы 
610 1 |a высокотемпературное окисление 
610 1 |a магнетронное распыление 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |3 (RuTPU)RU\TPU\pers\34949  |9 18267 
701 1 |a Sidelev  |b D. V.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Dmitry Vladimirovich  |3 (RuTPU)RU\TPU\pers\34524  |9 17905 
701 1 |a Rombaeva  |b M. R.  |g Mayya Ramazanovna 
701 1 |a Syrtanov  |b M. S.  |c physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Maksim Sergeevich  |3 (RuTPU)RU\TPU\pers\34764  |9 18114 
701 1 |a Bleykher (Bleicher)  |b G. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1961-  |g Galina Alekseevna  |3 (RuTPU)RU\TPU\pers\31496  |9 15657 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Научно-образовательный центр Б. П. Вейнберга  |3 (RuTPU)RU\TPU\col\23561 
801 2 |a RU  |b 63413507  |c 20200424  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.surfcoat.2020.125618 
942 |c CF