Dispersed phase structure and micro-explosion behavior under different schemes of water-fuel droplets heating

Detaylı Bibliyografya
Parent link:Fuel
Vol. 259.— 2020.— [116241, 6 p.]
Müşterek Yazar: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Diğer Yazarlar: Antonov D. V. Dmitry Vladimirovich, Piskunov M. V. Maksim Vladimirovich, Strizhak P. A. Pavel Alexandrovich, Tarlet D. Dominique, Bellettre J. Jerome
Özet:Title screen
One of the known and still unsolved problems of internal combustion engines and liquid fuel power plants is the complexity of efficient (i.e. with minimal cost of basic resources: time, energy and raw materials) ignition of fuels issued from valorization of waste. A promising way to improve the efficiency of ignition of liquid fuels is a secondary atomization using the micro-explosion of water-fuel droplets. This phenomenon is called micro-explosion when concerning an individual water-in-oil emulsion drop among the combusting spray. This process dramatically accelerates fuel heating and ignition, since fuel droplets issued from the secondary atomization are smaller and faster, increasing interfacial area. To investigate the atomization efficiency and its causes, the present work quantifies the occurrence of successful micro-explosion under large samples of experimental data. The behavior of water-fuel drops in the form of fine, middle-size emulsions or two immiscible liquids is observed using schemes with conductive, convective or radiative heat transfer provided at the same range of temperature.
Режим доступа: по договору с организацией-держателем ресурса
Baskı/Yayın Bilgisi: 2020
Konular:
Online Erişim:https://doi.org/10.1016/j.fuel.2019.116241
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=661702
Diğer Bilgiler
Özet:Title screen
One of the known and still unsolved problems of internal combustion engines and liquid fuel power plants is the complexity of efficient (i.e. with minimal cost of basic resources: time, energy and raw materials) ignition of fuels issued from valorization of waste. A promising way to improve the efficiency of ignition of liquid fuels is a secondary atomization using the micro-explosion of water-fuel droplets. This phenomenon is called micro-explosion when concerning an individual water-in-oil emulsion drop among the combusting spray. This process dramatically accelerates fuel heating and ignition, since fuel droplets issued from the secondary atomization are smaller and faster, increasing interfacial area. To investigate the atomization efficiency and its causes, the present work quantifies the occurrence of successful micro-explosion under large samples of experimental data. The behavior of water-fuel drops in the form of fine, middle-size emulsions or two immiscible liquids is observed using schemes with conductive, convective or radiative heat transfer provided at the same range of temperature.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.fuel.2019.116241