Development of Electron-beam Equipment and Technology for Additive Layer-wise Wire Cladding
Parent link: | AIP Conference Proceedings Vol. 2167 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2019 (AMHS'19).— 2019.— [020097, 6 p.] |
---|---|
अन्य लेखक: | , , , |
सारांश: | Title screen Currently, a wide range of additive technologies (or 3D printing technologies) are increasingly often used to obtain metal products of complex shape with anisotropic properties. A thick-walled part can be printed with less but sufficient precision (a few millimeters) and greater productivity by three-dimensional electron beam cladding with wire. The technology is based on a vacuum chamber with an electron-beam gun with a plasma emitter and modular manipulators, which enables layer-by-layer electron-beam melting (EBM) of powders or three-dimensional deposition of melted wire. Included software provides modular exchange and synchronized control of all system components according to the task using digital G-codes. The experimental printing was carried out at an accelerating voltage of 30 kV and a beam current from 15 to 20 mA. In this work, the samples from wires of Ti-6Al-4V titanium alloy and AISI 308 steel were printed on an electron-beam 3D-printer. The quality of the samples in terms of porosity and, hence, the mechanical properties was studied by non-destructive (computed tomography) and mechanical testing. It is shown that selecting proper modes of radiation exposure, wire feeding and beam scanning allows obtaining titanium and steel products with satisfactory mechanical properties. However, the problem of reducing macro porosity, especially for the titanium alloy, requires new approaches to optimizing the microstructural uniformity and porosity. Режим доступа: по договору с организацией-держателем ресурса |
भाषा: | अंग्रेज़ी |
प्रकाशित: |
2019
|
विषय: | |
ऑनलाइन पहुंच: | https://doi.org/10.1063/1.5131964 |
स्वरूप: | इलेक्ट्रोनिक पुस्तक अध्याय |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=661484 |
MARC
LEADER | 00000nla2a2200000 4500 | ||
---|---|---|---|
001 | 661484 | ||
005 | 20240212162001.0 | ||
035 | |a (RuTPU)RU\TPU\network\32095 | ||
035 | |a RU\TPU\network\32094 | ||
090 | |a 661484 | ||
100 | |a 20191227a2019 k y0engy50 ba | ||
101 | 0 | |a eng | |
105 | |a y z 100zy | ||
135 | |a drcn ---uucaa | ||
181 | 0 | |a i | |
182 | 0 | |a b | |
200 | 1 | |a Development of Electron-beam Equipment and Technology for Additive Layer-wise Wire Cladding |f V. V. Fedorov [et al.] | |
203 | |a Text |c electronic | ||
300 | |a Title screen | ||
320 | |a [References: 15 tit.] | ||
330 | |a Currently, a wide range of additive technologies (or 3D printing technologies) are increasingly often used to obtain metal products of complex shape with anisotropic properties. A thick-walled part can be printed with less but sufficient precision (a few millimeters) and greater productivity by three-dimensional electron beam cladding with wire. The technology is based on a vacuum chamber with an electron-beam gun with a plasma emitter and modular manipulators, which enables layer-by-layer electron-beam melting (EBM) of powders or three-dimensional deposition of melted wire. Included software provides modular exchange and synchronized control of all system components according to the task using digital G-codes. The experimental printing was carried out at an accelerating voltage of 30 kV and a beam current from 15 to 20 mA. In this work, the samples from wires of Ti-6Al-4V titanium alloy and AISI 308 steel were printed on an electron-beam 3D-printer. The quality of the samples in terms of porosity and, hence, the mechanical properties was studied by non-destructive (computed tomography) and mechanical testing. It is shown that selecting proper modes of radiation exposure, wire feeding and beam scanning allows obtaining titanium and steel products with satisfactory mechanical properties. However, the problem of reducing macro porosity, especially for the titanium alloy, requires new approaches to optimizing the microstructural uniformity and porosity. | ||
333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
461 | 0 | |0 (RuTPU)RU\TPU\network\4816 |t AIP Conference Proceedings | |
463 | 0 | |0 (RuTPU)RU\TPU\network\31884 |t Vol. 2167 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2019 (AMHS'19) |o Proceedings of the International Conference, 1–5 October 2019, Tomsk, Russia |f National Research Tomsk Polytechnic University (TPU) ; Institute of Strength Physics and Materials Science SB RAS (Russia) ; eds. V. E. Panin ; S. G. Psakhie ; V. M. Fomin |v [020097, 6 p.] |d 2019 | |
610 | 1 | |a электронный ресурс | |
610 | 1 | |a труды учёных ТПУ | |
610 | 1 | |a аддитивные технологии | |
610 | 1 | |a 3D-печать | |
610 | 1 | |a металлические изделия | |
610 | 1 | |a анизотропные свойства | |
610 | 1 | |a программное обеспечение | |
610 | 1 | |a электронно-лучевое плавление | |
610 | 1 | |a титановые сплавы | |
610 | 1 | |a механические свойства | |
610 | 1 | |a пористость | |
610 | 1 | |a провода | |
610 | 1 | |a осаждение | |
610 | 1 | |a 3D-принтеры | |
701 | 1 | |a Fedorov |b V. V. |c Specialist in the field of mechanical engineering |c Director of Research and Education Center Tomsk Polytechnic University |f 1983- |g Vasilii Viktorovich |3 (RuTPU)RU\TPU\pers\37531 | |
701 | 1 | |a Klimenov |b V. A. |c specialist in the field of non-destructive testing |c Professor of Tomsk Polytechnic University, Doctor of technical sciences |f 1951- |g Vasily Aleksandrovich |3 (RuTPU)RU\TPU\pers\32229 |9 16229 | |
701 | 1 | |a Batranin |b A. V. |c Specialist in the field of welding production |c Assistant of Tomsk Polytechnic University |f 1980- |g Andrey Viktorovich |3 (RuTPU)RU\TPU\pers\32706 |9 16592 | |
701 | 0 | |a Pardeep Ranga | |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа новых производственных технологий |b Отделение материаловедения |3 (RuTPU)RU\TPU\col\23508 |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Институт физики высоких технологий |b Кафедра материаловедения и технологии металлов |b Научно-образовательный центр "Современные производственные технологии" |3 (RuTPU)RU\TPU\col\22917 |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Институт неразрушающего контроля |b Российско-китайская научная лаборатория радиационного контроля и досмотра |3 (RuTPU)RU\TPU\col\21551 |
801 | 2 | |a RU |b 63413507 |c 20191227 |g RCR | |
856 | 4 | |u https://doi.org/10.1063/1.5131964 | |
942 | |c CF |