Atomization of promising multicomponent fuel droplets by their collisions
| Parent link: | Fuel Vol. 255.— 2019.— [115751, p. 15] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | , |
| Summary: | Title screen The relevance of the study is due to the necessity to intensify the secondary atomization of fuel droplets by their collisions with each other. The indispensable conditions for sustainable implementation of each of four collision regimes (coalescence, bouncing, separation and disruption) have been established. The experiments were carried out by varying the group of governing parameters in wide ranges: velocity of each droplet (0.5–5?m/s), its dimensions (0.1–5?mm) and angles of attack (0–90°), density (900–1150?kg/m3), viscosity (0.0001–0.5?Pa•s), surface tension (0.01–0.25?N/m), component composition of fuels (slurries and emulsions), degree of solid particle fineness (40–140?µm), and initial temperature (20–80?°C). The ranges of the main parameters in the dimensional and dimensionless coordinate systems providing conditions for intense droplet disruption have been defined. The most valuable experimental results are the determined conditions for a multiple increase in the number of child-droplets. Режим доступа: по договору с организацией-держателем ресурса |
| Language: | English |
| Published: |
2019
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.fuel.2019.115751 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660977 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 660977 | ||
| 005 | 20250409141903.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\31181 | ||
| 035 | |a RU\TPU\network\31173 | ||
| 090 | |a 660977 | ||
| 100 | |a 20191114d2019 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Atomization of promising multicomponent fuel droplets by their collisions |f Ya. S. Solomatin, N. E. Shlegel, P. A. Strizhak | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 330 | |a The relevance of the study is due to the necessity to intensify the secondary atomization of fuel droplets by their collisions with each other. The indispensable conditions for sustainable implementation of each of four collision regimes (coalescence, bouncing, separation and disruption) have been established. The experiments were carried out by varying the group of governing parameters in wide ranges: velocity of each droplet (0.5–5?m/s), its dimensions (0.1–5?mm) and angles of attack (0–90°), density (900–1150?kg/m3), viscosity (0.0001–0.5?Pa•s), surface tension (0.01–0.25?N/m), component composition of fuels (slurries and emulsions), degree of solid particle fineness (40–140?µm), and initial temperature (20–80?°C). The ranges of the main parameters in the dimensional and dimensionless coordinate systems providing conditions for intense droplet disruption have been defined. The most valuable experimental results are the determined conditions for a multiple increase in the number of child-droplets. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Fuel | ||
| 463 | |t Vol. 255 |v [115751, p. 15] |d 2019 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a fuel slurries and emulsions | |
| 610 | 1 | |a droplets | |
| 610 | 1 | |a collisionsinteraction regime maps | |
| 610 | 1 | |a secondary atomization | |
| 610 | 1 | |a child-droplets | |
| 610 | 1 | |a топливные суспензии | |
| 610 | 1 | |a топливные эмульсии | |
| 610 | 1 | |a капли | |
| 610 | 1 | |a атомизация | |
| 700 | 1 | |a Solomatin |b Ya. S. |g Yaroslav Sergeevich | |
| 701 | 1 | |a Shlegel |b N. E. |c specialist in the field of heat and power engineering |c Research Engineer of Tomsk Polytechnic University |f 1995- |g Nikita Evgenjevich |3 (RuTPU)RU\TPU\pers\46675 | |
| 701 | 1 | |a Strizhak |b P. A. |c Specialist in the field of heat power energy |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) |f 1985- |g Pavel Alexandrovich |3 (RuTPU)RU\TPU\pers\30871 |9 15117 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа энергетики |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) |3 (RuTPU)RU\TPU\col\23504 |
| 801 | 2 | |a RU |b 63413507 |c 20201119 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.fuel.2019.115751 | |
| 942 | |c CF | ||