Phenomenological Model of Radiation Hardness of LEDs Based on AlGaInP Heterostructures with Multiple Quantum Wells

Bibliographische Detailangaben
Parent link:Materials Science Forum: Scientific Journal
Vol. 970 : Modern Problems in Materials Processing, Manufacturing, Testing and Quality Assurance II.— 2019.— [P. 167-176]
1. Verfasser: Gradoboev A. V. Aleksandr Vasilyevich
Körperschaft: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Отделение контроля и диагностики
Weitere Verfasser: Orlova K. N. Kseniya Nikolaevna, Simonova A. V. Anastasia Vladimirovna
Zusammenfassung:Title screen
Neutron degradation of LEDs based upon AlGaInP heterostructures ([lambda]=630 nm and [lambda]=590 nm) with multiple quantum wells are presented in the article. For the initial red LED ([lambda]=630 nm) we can clearly distinguish three characteristic regions. In the small current region a low electron injection mode into the active region of the LEDs is observed. Further, as the operating current goes up, there are average and high electron injection in the active LEDs area regions. However, for the LEDY, the difference in the average and high electron injection regions is more pronounced and low electron injection region is absent. The boundary between the average and high electron injection regions can be characterized by the boundary current, which goes up with increasing exposure level. Three regions of electron injection in the active area of LEDs: low, average and high electron injection are illustrated for both types of LEDs under fast neutron irradiation. Based on the established relationships describing the emission power changing, a phenomenological model of the radiation hardness of LEDs based on AlGaInP heterostructures with MQW was shown. The LEDs radiation hardness is determined by the boundary current value, emission power in the low electron injection into the active LEDs area, the initial defective structure.
Режим доступа: по договору с организацией-держателем ресурса
Sprache:Englisch
Veröffentlicht: 2019
Schlagworte:
Online-Zugang:https://doi.org/10.4028/www.scientific.net/MSF.970.167
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660930

MARC

LEADER 00000nla2a2200000 4500
001 660930
005 20231102030436.0
035 |a (RuTPU)RU\TPU\network\31068 
035 |a RU\TPU\network\31057 
090 |a 660930 
100 |a 20191107a2019 k y0engy50 ba 
101 0 |a eng 
102 |a CH 
105 |a y z 100zy 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Phenomenological Model of Radiation Hardness of LEDs Based on AlGaInP Heterostructures with Multiple Quantum Wells  |f A. V. Gradoboev, K. N. Orlova, A. V. Simonova 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Neutron degradation of LEDs based upon AlGaInP heterostructures ([lambda]=630 nm and [lambda]=590 nm) with multiple quantum wells are presented in the article. For the initial red LED ([lambda]=630 nm) we can clearly distinguish three characteristic regions. In the small current region a low electron injection mode into the active region of the LEDs is observed. Further, as the operating current goes up, there are average and high electron injection in the active LEDs area regions. However, for the LEDY, the difference in the average and high electron injection regions is more pronounced and low electron injection region is absent. The boundary between the average and high electron injection regions can be characterized by the boundary current, which goes up with increasing exposure level. Three regions of electron injection in the active area of LEDs: low, average and high electron injection are illustrated for both types of LEDs under fast neutron irradiation. Based on the established relationships describing the emission power changing, a phenomenological model of the radiation hardness of LEDs based on AlGaInP heterostructures with MQW was shown. The LEDs radiation hardness is determined by the boundary current value, emission power in the low electron injection into the active LEDs area, the initial defective structure. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 0 |0 (RuTPU)RU\TPU\network\24092  |t Materials Science Forum  |o Scientific Journal 
463 0 |0 (RuTPU)RU\TPU\network\30892  |t Vol. 970 : Modern Problems in Materials Processing, Manufacturing, Testing and Quality Assurance II  |o September 2019, Tomsk, Russia  |f National Research Tomsk Polytechnic University (TPU) ; ed. A. P. Surzhikov  |v [P. 167-176]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a AlGaInP 
610 1 |a Heterostructures 
610 1 |a Light Emitting Diodes 
610 1 |a гетероструктуры 
610 1 |a светодиоды 
610 1 |a радиационная стойкость 
610 1 |a квантовые ямы 
700 1 |a Gradoboev  |b A. V.  |c physicist  |c Professor of Yurga technological Institute of Tomsk Polytechnic University, Doctor of technical sciences  |f 1952-  |g Aleksandr Vasilyevich  |2 stltpush  |3 (RuTPU)RU\TPU\pers\34242  |9 17773 
701 1 |a Orlova  |b K. N.  |c physicist  |c Associate Professor of Yurga technological Institute of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Kseniya Nikolaevna  |2 stltpush  |3 (RuTPU)RU\TPU\pers\33587  |9 17245 
701 1 |a Simonova  |b A. V.  |c Physicist  |c Assistant of the Department of Tomsk Polytechnic University  |f 1990-  |g Anastasia Vladimirovna  |2 stltpush  |3 (RuTPU)RU\TPU\pers\42263 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Отделение контроля и диагностики  |h 7978  |2 stltpush  |3 (RuTPU)RU\TPU\col\23584 
801 2 |a RU  |b 63413507  |c 20191107  |g RCR 
856 4 |u https://doi.org/10.4028/www.scientific.net/MSF.970.167 
942 |c CF