Combined techniques of secondary atomization of multi-component droplets

Bibliographic Details
Parent link:Chemical Engineering Science
Vol. 209.— 2019.— [115199, 17 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Other Authors: Kuznetsov G. V. Geny Vladimirovich, Shlegel N. E. Nikita Evgenjevich, Solomatin Ya. S. Yaroslav Sergeevich, Strizhak P. A. Pavel Alexandrovich
Summary:Title screen
In this paper, we present the experimental results of a secondary droplet atomization study by combining four schemes: droplet collisions with each other, with a solid surface, with a gas flow, as well as micro-explosive breakup of highly inhomogeneous liquid exposed to extensive heating. For each of the four schemes, we show the droplets sizes reduction range, atomization time, and the measured growth of liquid surface area. The latter parameter describes the intensity of the heat exchange and phase transitions at the liquid – gas interface. The experiments are conducted for water and water-based slurries and emulsions, including high-potential fuels. Basing on the experimental results for isolated droplets, we propose a technique for the experimental study of aerosol flows. We determine the droplets sizes that does not lead to its drastic increase due to coalescence or decrease due to disruption during aerosol cloud intermixing.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2019
Subjects:
Online Access:https://doi.org/10.1016/j.ces.2019.115199
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660872

Similar Items