Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites
| Parent link: | NDT & E International Vol. 107.— 2019.— [102151, 10 р.] |
|---|---|
| Korporace: | , |
| Další autoři: | , , , , , |
| Shrnutí: | Title screen In this study, high-power ultrasonics has been used for non-contact nondestructive testing of composites. Air-coupled magnetostrictive ultrasonic transducers provide reasonable amplitudes of horn oscillations even if this type of ultrasonic stimulation is close to the idle mode. Four types of ultrasonic horns have been designed and manufactured in order to choose an optimal horn configuration. For each horn, the dependence of vibration amplitude on ultrasonic unit power has been found to exhibit a good match between the theoretical and experimental results. The resonance frequencies and amplitudes of oscillatory velocity were experimentally evaluated by using the technique of scanning laser vibrometry and modeled by means of the Autodesk Inventor software. An air-coupled magnetostrictive transducer, in conjunction with an optimized horn, has been used in the evaluation of impact damage in a graphite epoxy composite and detection of water and excessive epoxy adhesive in an aviation honeycomb panel. It is expected that the technique of air-coupled ultrasonics may be useful for inspecting thin, fragile and hydrophilic materials. Режим доступа: по договору с организацией-держателем ресурса |
| Jazyk: | angličtina |
| Vydáno: |
2019
|
| Témata: | |
| On-line přístup: | https://doi.org/10.1016/j.ndteint.2019.102151 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660722 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 660722 | ||
| 005 | 20250407151225.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\30701 | ||
| 035 | |a RU\TPU\network\28427 | ||
| 090 | |a 660722 | ||
| 100 | |a 20191015d2019 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites |f D. A. Derusova [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 21 tit.] | ||
| 330 | |a In this study, high-power ultrasonics has been used for non-contact nondestructive testing of composites. Air-coupled magnetostrictive ultrasonic transducers provide reasonable amplitudes of horn oscillations even if this type of ultrasonic stimulation is close to the idle mode. Four types of ultrasonic horns have been designed and manufactured in order to choose an optimal horn configuration. For each horn, the dependence of vibration amplitude on ultrasonic unit power has been found to exhibit a good match between the theoretical and experimental results. The resonance frequencies and amplitudes of oscillatory velocity were experimentally evaluated by using the technique of scanning laser vibrometry and modeled by means of the Autodesk Inventor software. An air-coupled magnetostrictive transducer, in conjunction with an optimized horn, has been used in the evaluation of impact damage in a graphite epoxy composite and detection of water and excessive epoxy adhesive in an aviation honeycomb panel. It is expected that the technique of air-coupled ultrasonics may be useful for inspecting thin, fragile and hydrophilic materials. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t NDT & E International | ||
| 463 | |t Vol. 107 |v [102151, 10 р.] |d 2019 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a non-contact | |
| 610 | 1 | |a ultrasonics | |
| 610 | 1 | |a vibration methods | |
| 610 | 1 | |a laser vibrometry | |
| 610 | 1 | |a wave propagation | |
| 610 | 1 | |a ультраакустика | |
| 610 | 1 | |a вибрации | |
| 610 | 1 | |a виброметрия | |
| 610 | 1 | |a распространение волн | |
| 701 | 1 | |a Derusova |b D. A. |c chemist |c engineer of Tomsk Polytechnic University |f 1989- |g Dariya Aleksandrovna |3 (RuTPU)RU\TPU\pers\35097 | |
| 701 | 1 | |a Vavilov |b V. P. |c Specialist in the field of dosimetry and methodology of nondestructive testing (NDT) |c Doctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU) |f 1949- |g Vladimir Platonovich |3 (RuTPU)RU\TPU\pers\32161 |9 16163 | |
| 701 | 1 | |a Kolomeets |b N. P. | |
| 701 | 1 | |a Chulkov |b A. O. |c specialist in the field of non-destructive testing |c Deputy Director for Scientific and Educational Activities; acting manager; Senior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences |f 1989- |g Arseniy Olegovich |3 (RuTPU)RU\TPU\pers\32220 |9 16220 | |
| 701 | 1 | |a Rubtsov |b V. E. |c physicist |c engineer of Tomsk Polytechnic University, candidate of physical and mathematical sciences |f 1970- |g Valery Evgenjevich |3 (RuTPU)RU\TPU\pers\34118 | |
| 701 | 1 | |a Kolubaev |b Е. А. |c physicist |c engineer of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences |f 1979- |g Evgeny Aleksandrovich |3 (RuTPU)RU\TPU\pers\34115 |9 17655 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа неразрушающего контроля и безопасности |b Центр промышленной томографии |b Научно-производственная лаборатория "Бетатронная томография крупногабаритных объектов" |3 (RuTPU)RU\TPU\col\23717 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа неразрушающего контроля и безопасности |b Центр промышленной томографии |b Научно-производственная лаборатория "Тепловой контроль" |3 (RuTPU)RU\TPU\col\23838 |
| 801 | 2 | |a RU |b 63413507 |c 20191015 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.ndteint.2019.102151 | |
| 942 | |c CF | ||