An Experimental Study of Combustion of a Methane Hydrate Layer Using Thermal Imaging and Particle Tracking Velocimetry Methods

Bibliografski detalji
Parent link:Energies
Vol. 11, iss. 12.— 2018.— [3518, 19 p.]
Autor kompanije: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Daljnji autori: Misyura S. Ya. Sergey Yakovlevich, Voytkov I. S. Ivan Sergeevich, Morozov V. S. Vladimir Sergeevich, Manakov A. Yu. Andrey Yurjevich, Yashutina O. S. Olga Sergeevna, Ildyakov A. V. Andrey Vyacheslavovich
Sažetak:Title screen
In this paper, the combustion of methane hydrate over a powder layer is experimentally studied using thermal imaging and Particle Tracking Velocimetry (PTV) methods. The experiments are carried out at different velocities of the external laminar air-flow from zero to 0.6 m/s. Usually, simulation of methane hydrate combustion is carried out without taking into account free convection. A standard laminar boundary layer is often considered for simplification, and the temperature measurements are carried out only on the axis of the powder tank. Measurements of the powder temperature field have shown that there is a highly uneven temperature field on the layer surface, and inside the layer the transverse temperature profiles are nonlinear. The maximum temperature always corresponds to the powder near the side-walls, which is more than 10 °C higher than the average volumetric temperature in the layer. Thermal imager measurements have shown the inhomogeneous nature of combustion over the powder surface and the highly variable velocity of methane above the surface layer. The novelty of the research follows from the measurement of the velocity field using the PTV method and the measurement of methane velocity, which show that the nature of velocity at combustion is determined by the gas buoyancy rather than by the forced convection. The maximum gas velocity in the combustion region exceeds 3 m/s, and the excess of the oxidizer over the fuel leads to more than tenfold violation of the stoichiometric ratio. Despite that, the velocity profile in the combustion region is formed mainly due to free convection, it is also necessary to take into account the external flow of the forced gas U0. Even at low velocities U0, the velocity direction lines significantly deviate under the forced air-flow.
Izdano: 2018
Teme:
Online pristup:https://doi.org/10.3390/en11123518
Format: Elektronički Poglavlje knjige
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660604

MARC

LEADER 00000naa0a2200000 4500
001 660604
005 20250404132355.0
035 |a (RuTPU)RU\TPU\network\30196 
090 |a 660604 
100 |a 20190814d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a An Experimental Study of Combustion of a Methane Hydrate Layer Using Thermal Imaging and Particle Tracking Velocimetry Methods  |f S. Ya. Misyura [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 44 tit.] 
330 |a In this paper, the combustion of methane hydrate over a powder layer is experimentally studied using thermal imaging and Particle Tracking Velocimetry (PTV) methods. The experiments are carried out at different velocities of the external laminar air-flow from zero to 0.6 m/s. Usually, simulation of methane hydrate combustion is carried out without taking into account free convection. A standard laminar boundary layer is often considered for simplification, and the temperature measurements are carried out only on the axis of the powder tank. Measurements of the powder temperature field have shown that there is a highly uneven temperature field on the layer surface, and inside the layer the transverse temperature profiles are nonlinear. The maximum temperature always corresponds to the powder near the side-walls, which is more than 10 °C higher than the average volumetric temperature in the layer. Thermal imager measurements have shown the inhomogeneous nature of combustion over the powder surface and the highly variable velocity of methane above the surface layer. The novelty of the research follows from the measurement of the velocity field using the PTV method and the measurement of methane velocity, which show that the nature of velocity at combustion is determined by the gas buoyancy rather than by the forced convection. The maximum gas velocity in the combustion region exceeds 3 m/s, and the excess of the oxidizer over the fuel leads to more than tenfold violation of the stoichiometric ratio. Despite that, the velocity profile in the combustion region is formed mainly due to free convection, it is also necessary to take into account the external flow of the forced gas U0. Even at low velocities U0, the velocity direction lines significantly deviate under the forced air-flow. 
461 |t Energies 
463 |t Vol. 11, iss. 12  |v [3518, 19 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a combustion 
610 1 |a methane hydrate 
610 1 |a hydrate dissociation 
610 1 |a PTV method 
610 1 |a сгорание 
610 1 |a гидрат метана 
610 1 |a диссоциация 
701 1 |a Misyura  |b S. Ya.  |c specialist in the field of power engineering  |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences  |f 1964-  |g Sergey Yakovlevich  |3 (RuTPU)RU\TPU\pers\39641 
701 1 |a Voytkov  |b I. S.  |g Ivan Sergeevich 
701 1 |a Morozov  |b V. S.  |g Vladimir Sergeevich 
701 1 |a Manakov  |b A. Yu.  |g Andrey Yurjevich 
701 1 |a Yashutina  |b O. S.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1993-  |g Olga Sergeevna  |3 (RuTPU)RU\TPU\pers\44658 
701 1 |a Ildyakov  |b A. V.  |g Andrey Vyacheslavovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20191002  |g RCR 
856 4 |u https://doi.org/10.3390/en11123518 
942 |c CF