Marangoni flow and free convection during crystallization of a salt solution droplet

Dettagli Bibliografici
Parent link:Colloids and Surfaces A: Physicochemical and Engineering Aspects: Scientific Journal
Vol. 572.— 2019.— [P. 37–46]
Enti autori: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов, Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Altri autori: Kuznetsov G. V. Geny Vladimirovich, Misyura S. Ya. Sergey Yakovlevich, Volkov R. S. Roman Sergeevich, Morozov V. S. Vladimir Sergeevich
Riassunto:Title screen
The behavior of evaporation and crystallization of a drop of an aqueous solution of LiBr salt at the moment of rapid motion of the crystalline crust has been experimentally investigated. With the use of non-contact method of Particle Image Velocity (PIV) a technique was developed for measuring the instantaneous velocity field inside the droplet during crystallization. Data on the convection dynamics inside the droplet during crystallization have been obtained for the first time. It is shown that reliable measurement of the rate of convection in a drop is possible even through a thick crust of crystallohydrates, which is formed on the surface. Previously it was thought that the characteristic size of the convective vortex is comparable to the drop base radius R. The novelty of the work lies in the fact that a group of vortices, whose dimensions are much smaller than the radius R, is formed at crystallization. It is shown that even when the crystalline crust covers 80–90 % of the surface of the entire droplet, appreciable convective motion is realized inside the fluid, which must be considered for correct modeling of heat transfer and evaporation. Most modern technologies associated with the growth of crystals inside solutions often face problems of heat exchange control and the need to create a uniform temperature field inside the liquid. These studies help to understand the mechanisms of convection during crystallization and suggest ways to control crystallization.
Режим доступа: по договору с организацией-держателем ресурса
Pubblicazione: 2019
Soggetti:
Accesso online:https://doi.org/10.1016/j.colsurfa.2019.03.051
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660593

MARC

LEADER 00000naa0a2200000 4500
001 660593
005 20250404131057.0
035 |a (RuTPU)RU\TPU\network\30157 
090 |a 660593 
100 |a 20190809d2019 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Marangoni flow and free convection during crystallization of a salt solution droplet  |f G. V. Kuznetsov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 77 tit.] 
330 |a The behavior of evaporation and crystallization of a drop of an aqueous solution of LiBr salt at the moment of rapid motion of the crystalline crust has been experimentally investigated. With the use of non-contact method of Particle Image Velocity (PIV) a technique was developed for measuring the instantaneous velocity field inside the droplet during crystallization. Data on the convection dynamics inside the droplet during crystallization have been obtained for the first time. It is shown that reliable measurement of the rate of convection in a drop is possible even through a thick crust of crystallohydrates, which is formed on the surface. Previously it was thought that the characteristic size of the convective vortex is comparable to the drop base radius R. The novelty of the work lies in the fact that a group of vortices, whose dimensions are much smaller than the radius R, is formed at crystallization. It is shown that even when the crystalline crust covers 80–90 % of the surface of the entire droplet, appreciable convective motion is realized inside the fluid, which must be considered for correct modeling of heat transfer and evaporation. Most modern technologies associated with the growth of crystals inside solutions often face problems of heat exchange control and the need to create a uniform temperature field inside the liquid. These studies help to understand the mechanisms of convection during crystallization and suggest ways to control crystallization. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Colloids and Surfaces A: Physicochemical and Engineering Aspects  |o Scientific Journal  
463 |t Vol. 572  |v [P. 37–46]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a crystallization 
610 1 |a evaporation rate 
610 1 |a salt solutions 
610 1 |a PIV measurement 
610 1 |a droplet 
610 1 |a substrate 
610 1 |a кристаллизация 
610 1 |a испарение 
610 1 |a солевые растворы 
610 1 |a капля 
610 1 |a подложки 
701 1 |a Kuznetsov  |b G. V.  |c Specialist in the field of heat power energy  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1949-  |g Geny Vladimirovich  |3 (RuTPU)RU\TPU\pers\31891  |9 15963 
701 1 |a Misyura  |b S. Ya.  |c specialist in the field of power engineering  |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences  |f 1964-  |g Sergey Yakovlevich  |3 (RuTPU)RU\TPU\pers\39641 
701 1 |a Volkov  |b R. S.  |c specialist in the field of power engineering  |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences  |f 1987-  |g Roman Sergeevich  |3 (RuTPU)RU\TPU\pers\33926  |9 17499 
701 1 |a Morozov  |b V. S.  |g Vladimir Sergeevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа энергетики  |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)  |3 (RuTPU)RU\TPU\col\23504 
801 2 |a RU  |b 63413507  |c 20190809  |g RCR 
856 4 |u https://doi.org/10.1016/j.colsurfa.2019.03.051 
942 |c CF