Heat transfer of aqueous salt solution layers

Dettagli Bibliografici
Parent link:International Journal of Heat and Mass Transfer
Vol. 125.— 2018.— [P. 610-617]
Autore principale: Misyura S. Ya. Sergey Yakovlevich
Ente Autore: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Riassunto:Title screen
Heat transfer and evaporation of layers of water and aqueous solutions of salts on a heated horizontal wall were studied experimentally. Aqueous solutions of salts can be divided into two characteristic groups. For the first group of salts, the evaporation rates and heat transfer coefficients increase with time. For the second group, the rate of evaporation falls sharply with increasing salt concentration and with decreasing liquid layer height. This difference in salts’ behavior is determined by the difference in equilibrium curves and in physical and chemical properties of salts. The heat transfer coefficient for water and salt solutions increases when the layer height becomes less than 1.2–1.5?mm. With increasing concentration of salt and when approaching the crystallization point the role of free convection in the liquid phase decreases sharply, and the Nusselt number approaches 1. For salt solutions (LiBr, CaCl2 and LiCl), a significant excess of convection (?) over the conductive heat transfer (?) is observed for the layer height ? over 1.8–2.0?mm. For pure water, convective and conductive components are comparable even for ? = 3?mm. This difference for salts is associated with substantial intensification of heat transfer, which is probably caused by the concentration flow of Marangoni MaC. Strong influence of MaC on heat and mass transfer in a thin layer and at high temperatures is detected for the first time and is extremely important for accurate modeling in unsteady and non-isothermal processes. Experimental data show a surprising result. The free liquid convection for salt solutions significantly exceeds the convection in the water layer for the most part of the evaporation time.
Режим доступа: по договору с организацией-держателем ресурса
Lingua:inglese
Pubblicazione: 2018
Soggetti:
Accesso online:https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.075
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660580

MARC

LEADER 00000naa0a2200000 4500
001 660580
005 20250404105504.0
035 |a (RuTPU)RU\TPU\network\30117 
090 |a 660580 
100 |a 20190806d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Heat transfer of aqueous salt solution layers  |f S. Ya. Misyura 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 33 tit.] 
330 |a Heat transfer and evaporation of layers of water and aqueous solutions of salts on a heated horizontal wall were studied experimentally. Aqueous solutions of salts can be divided into two characteristic groups. For the first group of salts, the evaporation rates and heat transfer coefficients increase with time. For the second group, the rate of evaporation falls sharply with increasing salt concentration and with decreasing liquid layer height. This difference in salts’ behavior is determined by the difference in equilibrium curves and in physical and chemical properties of salts. The heat transfer coefficient for water and salt solutions increases when the layer height becomes less than 1.2–1.5?mm. With increasing concentration of salt and when approaching the crystallization point the role of free convection in the liquid phase decreases sharply, and the Nusselt number approaches 1. For salt solutions (LiBr, CaCl2 and LiCl), a significant excess of convection (?) over the conductive heat transfer (?) is observed for the layer height ? over 1.8–2.0?mm. For pure water, convective and conductive components are comparable even for ? = 3?mm. This difference for salts is associated with substantial intensification of heat transfer, which is probably caused by the concentration flow of Marangoni MaC. Strong influence of MaC on heat and mass transfer in a thin layer and at high temperatures is detected for the first time and is extremely important for accurate modeling in unsteady and non-isothermal processes. Experimental data show a surprising result. The free liquid convection for salt solutions significantly exceeds the convection in the water layer for the most part of the evaporation time. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t International Journal of Heat and Mass Transfer 
463 |t Vol. 125  |v [P. 610-617]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a aqueous salt solution 
610 1 |a evaporation rate 
610 1 |a heat transfer 
610 1 |a водно-солевые растворы 
610 1 |a испарение 
610 1 |a теплопередача 
700 1 |a Misyura  |b S. Ya.  |c specialist in the field of power engineering  |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences  |f 1964-  |g Sergey Yakovlevich  |3 (RuTPU)RU\TPU\pers\39641 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20190806  |g RCR 
856 4 |u https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.075 
942 |c CF