Core electron level shifts in zirconium induced by vacancy, helium and hydrogen

Podrobná bibliografie
Parent link:Computational Materials Science
Vol. 153.— 2018.— [P. 176–182]
Korporace: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики, Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение естественных наук
Další autoři: Svyatkin L. A. Leonid Aleksandrovich, Lopatina O. V. Oksana Valerievna, Chernov I. P. Ivan Petrovich, Koroteev Yu. M. Yuri Mikhailovich
Shrnutí:Title screen
The paper presents a first-principle calculation of the influence of lattice defects (a hydrogen atom, a vacancy and a helium-in-vacancy complex) and their concentration on the core electron binding energies in zirconium atoms. It is shown that the formation of a vacancy or a helium-in-vacancy complex causes core-level shifts of Zr atoms to lower binding energies. Hydrogen dissolution leads to core-level shifts to both lower and higher binding energies. Besides, the effects of electron density redistribution in zirconium (due to the appearance of the defect and, as a consequence, the change of the crystal volume and the lattice relaxation around the defect) on the core electron binding energies are studied.
Режим доступа: по договору с организацией-держателем ресурса
Vydáno: 2018
Témata:
On-line přístup:https://doi.org/10.1016/j.commatsci.2018.06.034
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660570
Popis
Shrnutí:Title screen
The paper presents a first-principle calculation of the influence of lattice defects (a hydrogen atom, a vacancy and a helium-in-vacancy complex) and their concentration on the core electron binding energies in zirconium atoms. It is shown that the formation of a vacancy or a helium-in-vacancy complex causes core-level shifts of Zr atoms to lower binding energies. Hydrogen dissolution leads to core-level shifts to both lower and higher binding energies. Besides, the effects of electron density redistribution in zirconium (due to the appearance of the defect and, as a consequence, the change of the crystal volume and the lattice relaxation around the defect) on the core electron binding energies are studied.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.commatsci.2018.06.034