Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications

Podrobná bibliografie
Parent link:European Polymer Journal
Vol. 117.— 2019.— [P. 272-279]
Korporativní autor: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы"
Další autoři: Zvyagin A. S. Andrey Sergeevich, Chernozem R. V. Roman Viktorovich, Surmeneva M. A. Maria Alexandrovna, Pyeon M. Myeongwhun, Frank M. Michael, Ludwig T. Tim, Tutacz P. Peter, Ivanov Yu. F. Yuriy Fedorovich, Mathur S. Sanjay, Surmenev R. A. Roman Anatolievich
Shrnutí:Title screen
Fibrous scaffolds based on biodegradable piezoelectric poly(3-hydroxybutyrate) (PHB) polymers were fabricated via electrospinning. Hydrothermal deposition of zinc oxide (ZnO) on the surfaces of fibrous PHB scaffolds resulted in a homogeneous ZnO layer that grew conformally on the porous polymeric scaffold. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results confirmed the formation of a hexagonal wurtzite crystal structure of ZnO on the PHB fibres. XRD patterns, TEM and EDS analysis revealed a bimodal morphology with rod-like nanostructures that grew preferentially along the c-axis as well as nanoparticles that grew randomly. The piezoelectric charge coefficient d33 for pristine PHB scaffolds was 2.9?±?0.1?pC·N-1, whereas after ZnO deposition, it substantially increased to 13.7?±?1.6?pC·N-1. Moreover, the output surface electrical potential of PHB scaffolds after ZnO deposition also substantially increased from 0.58?±?0.02 to 0.88?±?0.04?V, showing enhanced electromechanical coupling in the piezoelectric nanocomposites. The output surface electric potential for ZnO-coated PHB scaffolds was stable within 1200 loading cycles. In addition, the ZnO rod-like nanostructured surface improved the wettability of PHB fibrous scaffolds, demonstrating synergy between the ceramic and polymeric phases in PHB/ZnO composites. Therefore, the hybrid biodegradable piezoelectric scaffolds reported in the present study are potentially useful for biomedical applications, where both improved piezoelectric response and surface wettability are required.
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 2019
Témata:
On-line přístup:https://doi.org/10.1016/j.eurpolymj.2019.05.016
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660506

MARC

LEADER 00000naa0a2200000 4500
001 660506
005 20250826102328.0
035 |a (RuTPU)RU\TPU\network\29956 
035 |a RU\TPU\network\28078 
090 |a 660506 
100 |a 20190705d2019 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications  |f A. S. Zvyagin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 45 tit.] 
330 |a Fibrous scaffolds based on biodegradable piezoelectric poly(3-hydroxybutyrate) (PHB) polymers were fabricated via electrospinning. Hydrothermal deposition of zinc oxide (ZnO) on the surfaces of fibrous PHB scaffolds resulted in a homogeneous ZnO layer that grew conformally on the porous polymeric scaffold. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results confirmed the formation of a hexagonal wurtzite crystal structure of ZnO on the PHB fibres. XRD patterns, TEM and EDS analysis revealed a bimodal morphology with rod-like nanostructures that grew preferentially along the c-axis as well as nanoparticles that grew randomly. The piezoelectric charge coefficient d33 for pristine PHB scaffolds was 2.9?±?0.1?pC·N-1, whereas after ZnO deposition, it substantially increased to 13.7?±?1.6?pC·N-1. Moreover, the output surface electrical potential of PHB scaffolds after ZnO deposition also substantially increased from 0.58?±?0.02 to 0.88?±?0.04?V, showing enhanced electromechanical coupling in the piezoelectric nanocomposites. The output surface electric potential for ZnO-coated PHB scaffolds was stable within 1200 loading cycles. In addition, the ZnO rod-like nanostructured surface improved the wettability of PHB fibrous scaffolds, demonstrating synergy between the ceramic and polymeric phases in PHB/ZnO composites. Therefore, the hybrid biodegradable piezoelectric scaffolds reported in the present study are potentially useful for biomedical applications, where both improved piezoelectric response and surface wettability are required. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t European Polymer Journal 
463 |t Vol. 117  |v [P. 272-279]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a hybrid polymer scaffolds 
610 1 |a hydrothermal treatment 
610 1 |a zinc oxide 
610 1 |a piezoelectricity 
610 1 |a wettability 
610 1 |a строительные леса 
610 1 |a гидротермальная деятельность 
610 1 |a оксид цинка 
610 1 |a пьезоэлектричество 
610 1 |a смачиваемость 
701 1 |a Zvyagin  |b A. S.  |g Andrey Sergeevich 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Pyeon  |b M.  |g Myeongwhun 
701 1 |a Frank  |b M.  |g Michael 
701 1 |a Ludwig  |b T.  |g Tim 
701 1 |a Tutacz  |b P.  |g Peter 
701 1 |a Ivanov  |b Yu. F.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1955-  |g Yuriy Fedorovich  |3 (RuTPU)RU\TPU\pers\33559 
701 1 |a Mathur  |b S.  |g Sanjay 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
801 2 |a RU  |b 63413507  |c 20190705  |g RCR 
856 4 |u https://doi.org/10.1016/j.eurpolymj.2019.05.016 
942 |c CF