Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation

Bibliographic Details
Parent link:ACS Applied Materials and Interfaces
Vol. 21, iss. 11.— 2019.— [P. 19522-19533]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы"
Other Authors: Chernozem R. V. Roman Viktorovich, Surmeneva M. A. Maria Alexandrovna, Shkarina S. N. Svetlana Nikolaevna, Loza K. Katerina, Epple M. Mattias, Ulbrikht M. Mattias, Setsiliya A. Andzhelika, Krauze B. Barbel, Baumbach T. Tilo, Abalymov A. A. Anatoly Anatoljevich, Parakkhonsky B. V. Bogdan Vladislavovich, Skirtach A. G. Andrey Gennadjevich, Surmenev R. A. Roman Anatolievich
Summary:Title screen
Elaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO3-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[(R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (PHBV), are presented. Mineralization of the scaffold surface is carried out by the in situ synthesis of CaCO3 in the vaterite and calcite polymorphs using ultrasound (U/S). Comparative characterization of PHB and PHBV scaffolds demonstrated an impact of the porosity and surface charge on the mineralization in a dynamic mechanical system, as no essential distinction was observed in wettability, structure, and surface chemical compositions. A significantly higher (4.3 times) piezoelectric charge and a higher porosity (~15%) lead to a more homogenous CaCO3 growth in 3-D fibrous structures and result in a two times higher relative mass increase for PHB scaffolds compared to that for PHBV. This also increases the local ion concentration incurred upon mineralization under U/S-generated dynamic mechanical conditions.
The modification of the wettability for PHB and PHBV scaffolds from hydrophobic (nonmineralized fibers) to superhydrophilic (mineralized fibers) led to a pronounced apatite-forming behavior of scaffolds in a simulated body fluid. In turn, this results in the formation of a dense monolayer of well-distributed and proliferated osteoblast cells along the fibers. CaCO3-mineralized PHBV surfaces had a higher osteoblast cell adhesion and proliferation assigned to a higher amount of CaCO3 on the surface compared to that on PHB scaffolds, as incurred from micro-computed tomography (µCT). Importantly, a cell viability study confirmed biocompatibility of all the scaffolds. Thus, hybrid biocomposites based on the piezoelectric PHB polymers represent an effective scaffold platform functionalized by an inorganic phase and stimulating the growth of the bone tissue.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2019
Subjects:
Online Access:https://doi.org/10.1021/acsami.9b04936
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660500

MARC

LEADER 00000naa0a2200000 4500
001 660500
005 20250826100423.0
035 |a (RuTPU)RU\TPU\network\29950 
035 |a RU\TPU\network\29077 
090 |a 660500 
100 |a 20190705d2019 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation  |f R. V. Chernozem [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Elaboration of novel biocomposites providing simultaneously both biodegradability and stimulated bone tissue repair is essential for regenerative medicine. In particular, piezoelectric biocomposites are attractive because of a possibility to electrically stimulate cell response. In the present study, novel CaCO3-mineralized piezoelectric biodegradable scaffolds based on two polymers, poly[(R)3-hydroxybutyrate] (PHB) and poly[3-hydroxybutyrate-co-3-hydroxyvalerate] (PHBV), are presented. Mineralization of the scaffold surface is carried out by the in situ synthesis of CaCO3 in the vaterite and calcite polymorphs using ultrasound (U/S). Comparative characterization of PHB and PHBV scaffolds demonstrated an impact of the porosity and surface charge on the mineralization in a dynamic mechanical system, as no essential distinction was observed in wettability, structure, and surface chemical compositions. A significantly higher (4.3 times) piezoelectric charge and a higher porosity (~15%) lead to a more homogenous CaCO3 growth in 3-D fibrous structures and result in a two times higher relative mass increase for PHB scaffolds compared to that for PHBV. This also increases the local ion concentration incurred upon mineralization under U/S-generated dynamic mechanical conditions. 
330 |a The modification of the wettability for PHB and PHBV scaffolds from hydrophobic (nonmineralized fibers) to superhydrophilic (mineralized fibers) led to a pronounced apatite-forming behavior of scaffolds in a simulated body fluid. In turn, this results in the formation of a dense monolayer of well-distributed and proliferated osteoblast cells along the fibers. CaCO3-mineralized PHBV surfaces had a higher osteoblast cell adhesion and proliferation assigned to a higher amount of CaCO3 on the surface compared to that on PHB scaffolds, as incurred from micro-computed tomography (µCT). Importantly, a cell viability study confirmed biocompatibility of all the scaffolds. Thus, hybrid biocomposites based on the piezoelectric PHB polymers represent an effective scaffold platform functionalized by an inorganic phase and stimulating the growth of the bone tissue. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t ACS Applied Materials and Interfaces 
463 |t Vol. 21, iss. 11  |v [P. 19522-19533]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a scaffold piezoelectric 
610 1 |a calcium carbonate 
610 1 |a bone tissue engineering 
610 1 |a mineralization 
610 1 |a карбонат кальция 
610 1 |a инженерия 
610 1 |a костные ткани 
610 1 |a минерализация 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Shkarina  |b S. N.  |g Svetlana Nikolaevna 
701 1 |a Loza  |b K.  |g Katerina 
701 1 |a Epple  |b M.  |g Mattias 
701 1 |a Ulbrikht  |b M.  |g Mattias 
701 1 |a Setsiliya  |b A.  |g Andzhelika 
701 1 |a Krauze  |b B.  |g Barbel 
701 1 |a Baumbach  |b T.  |g Tilo 
701 1 |a Abalymov  |b A. A.  |g Anatoly Anatoljevich 
701 1 |a Parakkhonsky  |b B. V.  |g Bogdan Vladislavovich 
701 1 |a Skirtach  |b A. G.  |g Andrey Gennadjevich 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
801 2 |a RU  |b 63413507  |c 20190705  |g RCR 
856 4 |u https://doi.org/10.1021/acsami.9b04936 
942 |c CF