A Task Scheduling Strategy for Utility Maximization in a Renewable-Powered IoT Node

Detalhes bibliográficos
Parent link:IEEE Global Communications Conference (GLOBECOM 2018): proceedings, Abu Dhabi, December 9-13, 2018. [18472586, 6 p.].— , 2018
Autor Corporativo: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра программной инженерии (ПИ)
Outros Autores: Leithon J. Johann, Suarez L. A. Luis, Dzhayakodi Arachshiladzh D. N. K. Dushanta Nalin Kumara, Anis Muhammad M. Moiz
Resumo:Title screen
In this paper, we propose a task scheduling strategy for an Internet of Things (IoT) node powered by renewable energy (RE). The node is assumed to have a rechargeable battery and an RE harvester. Moreover, the node is requested to perform M tasks over a planning period of N = M time slots. Each task is assigned a priority rating and a reward. With these considerations we develop a mathematical framework to optimize the utility of the node, defined as the sum of rewards over the specified planning horizon. Using the proposed framework, we derive a genie-aided strategy, which serves as a performance benchmark for online algorithms. We then propose an online task scheduling strategy, which uses existing forecasting methods to estimate future RE production. We finally evaluate the performance of the proposed strategy and its robustness to forecasting errors through extensive simulations. The impact of system parameters such as battery size and RE harvesting capacity are also examined numerically.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglês
Publicado em: 2018
Assuntos:
Acesso em linha:https://doi.org/10.1109/GLOCOM.2018.8647691
Formato: Recurso Eletrônico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660495

MARC

LEADER 00000naa0a2200000 4500
001 660495
005 20250828153446.0
035 |a (RuTPU)RU\TPU\network\29945 
035 |a RU\TPU\network\29944 
090 |a 660495 
100 |a 20190704d2018 k y0engy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a A Task Scheduling Strategy for Utility Maximization in a Renewable-Powered IoT Node  |f J. Leithon [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 10 tit.] 
330 |a In this paper, we propose a task scheduling strategy for an Internet of Things (IoT) node powered by renewable energy (RE). The node is assumed to have a rechargeable battery and an RE harvester. Moreover, the node is requested to perform M tasks over a planning period of N = M time slots. Each task is assigned a priority rating and a reward. With these considerations we develop a mathematical framework to optimize the utility of the node, defined as the sum of rewards over the specified planning horizon. Using the proposed framework, we derive a genie-aided strategy, which serves as a performance benchmark for online algorithms. We then propose an online task scheduling strategy, which uses existing forecasting methods to estimate future RE production. We finally evaluate the performance of the proposed strategy and its robustness to forecasting errors through extensive simulations. The impact of system parameters such as battery size and RE harvesting capacity are also examined numerically. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
463 |t IEEE Global Communications Conference (GLOBECOM 2018)  |o proceedings, Abu Dhabi, December 9-13, 2018  |v [18472586, 6 p.]  |d 2018 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
701 1 |a Leithon  |b J.  |g Johann 
701 1 |a Suarez  |b L. A.  |g Luis 
701 1 |a Dzhayakodi Arachshiladzh  |b D. N. K.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Dushanta Nalin Kumara  |3 (RuTPU)RU\TPU\pers\37962 
701 1 |a Anis Muhammad  |b M.  |g Moiz 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |b Кафедра программной инженерии (ПИ)  |3 (RuTPU)RU\TPU\col\22918 
801 2 |a RU  |b 63413507  |c 20190704  |g RCR 
856 4 0 |u https://doi.org/10.1109/GLOCOM.2018.8647691 
942 |c CF