On the positioning likelihood of UAVs in 5G networks

Bibliografiset tiedot
Parent link:Physical Communication
Vol. 31.— 2018.— [P. 1-9]
Päätekijä: Dzhayakodi Arachshiladzh D. N. K. Dushanta Nalin Kumara
Yhteisötekijä: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра программной инженерии (ПИ)
Muut tekijät: Sharma V. Vishal, Srinivasan K. Kathiravan
Yhteenveto:An increment in the number of User Equipment (UE) demands network replanning or introducing incipient devices which can provide dynamic support to the subsisting networks. One of these devices can be the Unmanned Aerial Vehicles (UAVs). However, being prodigiously dynamic and autonomous in some scenarios, these vehicles require an efficient mechanism for their deployment in currently operating wireless networks. In this paper, an efficient approach is proposed which utilizes the properties of the self-healing neural model and the concept of matrix-coloring in order to maximize the UAVs positioning likelihood for optimized throughput coverage and maximum UE to UAV mapping. The efficacy of the proposed approach is demonstrated in terms of amelioration in the throughput coverage and mapping of the UAV to subdivisions at low consumption of energy and memory by using numerical simulations.
Режим доступа: по договору с организацией-держателем ресурса
Kieli:englanti
Julkaistu: 2018
Aiheet:
Linkit:https://doi.org/10.1016/j.phycom.2018.08.010
Aineistotyyppi: Elektroninen Kirjan osa
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660491

MARC

LEADER 00000naa0a2200000 4500
001 660491
005 20250403173730.0
035 |a (RuTPU)RU\TPU\network\29941 
035 |a RU\TPU\network\29940 
090 |a 660491 
100 |a 20190704d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a On the positioning likelihood of UAVs in 5G networks  |f D. N. K. Dzhayakodi Arachshiladzh, V. Sharma, K. Srinivasan 
203 |a Text  |c electronic 
320 |a [References: 35 tit.] 
330 |a An increment in the number of User Equipment (UE) demands network replanning or introducing incipient devices which can provide dynamic support to the subsisting networks. One of these devices can be the Unmanned Aerial Vehicles (UAVs). However, being prodigiously dynamic and autonomous in some scenarios, these vehicles require an efficient mechanism for their deployment in currently operating wireless networks. In this paper, an efficient approach is proposed which utilizes the properties of the self-healing neural model and the concept of matrix-coloring in order to maximize the UAVs positioning likelihood for optimized throughput coverage and maximum UE to UAV mapping. The efficacy of the proposed approach is demonstrated in terms of amelioration in the throughput coverage and mapping of the UAV to subdivisions at low consumption of energy and memory by using numerical simulations. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physical Communication 
463 |t Vol. 31  |v [P. 1-9]  |d 2018 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a positioning 
610 1 |a uavs 
610 1 |a throughput 
610 1 |a 5G 
610 1 |a hetnets 
610 1 |a network likelihood 
610 1 |a пропускная способность 
610 1 |a пропускная способность сети 
700 1 |a Dzhayakodi Arachshiladzh  |b D. N. K.  |c specialist in the field of electronics  |c Professor of Tomsk Polytechnic University  |f 1983-  |g Dushanta Nalin Kumara  |3 (RuTPU)RU\TPU\pers\37962 
701 1 |a Sharma  |b V.  |g Vishal 
701 1 |a Srinivasan  |b K.  |g Kathiravan 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |b Кафедра программной инженерии (ПИ)  |3 (RuTPU)RU\TPU\col\22918 
801 2 |a RU  |b 63413507  |c 20190704  |g RCR 
856 4 0 |u https://doi.org/10.1016/j.phycom.2018.08.010 
942 |c CF