Downlink capacity of OFDMA-CR based 5G femtocell networks
| Parent link: | Physical Communication Vol. 29.— 2018.— [P. 329-335] |
|---|---|
| Autor principal: | |
| Autor Corporativo: | |
| Outros Autores: | , |
| Resumo: | This research work explores small cell densification as a key technique for next generation wireless network (NGWN). Small cell densification comprises space (i.e, dense deployment of femtocells) and spectrum (i.e., utilization of frequency band at large). The usage of femtocells not only improves the spectral efficiency (SE) of the Heterogeneous two-tier networks against conventional approach, but also it alleviates outage probability and enhances the achievable capacity. We yield an analytical framework to establish the density of the femto base station (FBS) to a monotonically increasing or decreasing function of distance or radius, respectively. This ensures the enhanced performance in spectrum sharing Orthogonal Frequency Division Multiple Access (OFDMA) femtocell network models. We also illustrate the influence of active Femto users (i.e., users in femtocells, and they are usually low mobility and located closer to the cell center with less fading), cluster size (i.e., a group of adjacent macrocells which use all of the systems frequency assignments) via simulation results. Режим доступа: по договору с организацией-держателем ресурса |
| Publicado em: |
2018
|
| Assuntos: | |
| Acesso em linha: | https://doi.org/10.1016/j.phycom.2018.04.016 |
| Formato: | Recurso Eletrônico Capítulo de Livro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660490 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 660490 | ||
| 005 | 20250403173637.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\29940 | ||
| 035 | |a RU\TPU\network\21699 | ||
| 090 | |a 660490 | ||
| 100 | |a 20190704d2018 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Downlink capacity of OFDMA-CR based 5G femtocell networks |f Gh. Joydev, D. N. K. Dzhayakodi Arachshiladzh, M. Qaraqe | |
| 203 | |a Text |c electronic | ||
| 320 | |a [References: 20 tit.] | ||
| 330 | |a This research work explores small cell densification as a key technique for next generation wireless network (NGWN). Small cell densification comprises space (i.e, dense deployment of femtocells) and spectrum (i.e., utilization of frequency band at large). The usage of femtocells not only improves the spectral efficiency (SE) of the Heterogeneous two-tier networks against conventional approach, but also it alleviates outage probability and enhances the achievable capacity. We yield an analytical framework to establish the density of the femto base station (FBS) to a monotonically increasing or decreasing function of distance or radius, respectively. This ensures the enhanced performance in spectrum sharing Orthogonal Frequency Division Multiple Access (OFDMA) femtocell network models. We also illustrate the influence of active Femto users (i.e., users in femtocells, and they are usually low mobility and located closer to the cell center with less fading), cluster size (i.e., a group of adjacent macrocells which use all of the systems frequency assignments) via simulation results. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Physical Communication | ||
| 463 | |t Vol. 29 |v [P. 329-335] |d 2018 | ||
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a macrocell | |
| 610 | 1 | |a femtocell | |
| 610 | 1 | |a Orthogonal Frequency Division Multiple Access (OFDMA) | |
| 610 | 1 | |a cognitive radio (CR) technology | |
| 610 | 1 | |a downlink (DL) capacity | |
| 700 | 1 | |a Joydev |b Gh. |g Ghosh | |
| 701 | 1 | |a Dzhayakodi Arachshiladzh |b D. N. K. |c specialist in the field of electronics |c Professor of Tomsk Polytechnic University |f 1983- |g Dushanta Nalin Kumara |3 (RuTPU)RU\TPU\pers\37962 | |
| 701 | 1 | |a Qaraqe |b M. |g Marwa | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт кибернетики (ИК) |b Кафедра программной инженерии (ПИ) |3 (RuTPU)RU\TPU\col\22918 |
| 801 | 2 | |a RU |b 63413507 |c 20190704 |g RCR | |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.phycom.2018.04.016 |
| 942 | |c CF | ||