Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices

Dettagli Bibliografici
Parent link:Beilstein Journal of Nanotechnology
Vol. 9.— 2018.— [P. 2845–2854]
Ente Autore: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий (ИШХБМТ)
Altri autori: Hai Zh. Zhenyin, Akbari M. K. Mohammad Karbalaei, Wei Zh. Zihan, Cui Danfeng, Xue Chenyang, Xu Hongyan, Heynderickx P. M. Philippe, Verpoort F. V. K. Frensis Valter Kornelius, Zhuiykov S. Serge
Riassunto:Title screen
Although 2D layered nanomaterials have been intensively investigated towards their application in energy conversion and storage devices, their disadvantages have rarely been explored so far especially compared to their 3D counterparts. Herein, WO3·nH2O (n = 0, 1, 2), as the most common and important electrochemical and electrochromic active nanomaterial, is synthesized in 3D and 2D structures through a facile hydrothermal method, and the disadvantages of the corresponding 2D structures are examined. The weakness of 2D WO3·nH2O originates from its layered structure. X-ray diffraction and scanning electron microscopy analyses of as-grown WO3·nH2O samples suggest a structural transition from 2D to 3D upon temperature increase. 2D WO3·nH2O easily generates structural instabilities by 2D intercalation, resulting in a faster performance degradation, due to its weak interlayer van der Waals forces, even though it outranks the 3D network structure in terms of improved electronic properties. The structural transformation of 2D layered WO3·nH2O into 3D nanostructures is observed via ex situ Raman measurements under electrochemical cycling experiments. The proposed degradation mechanism is confirmed by the morphology changes. The work provides strong evidence for and in-depth understanding of the weakness of 2D layered nanomaterials and paves the way for further interlayer reinforcement, especially for 2D layered transition metal oxides.
Lingua:inglese
Pubblicazione: 2018
Soggetti:
Accesso online:http://dx.doi.org/10.3762/bjnano.9.265
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660288

MARC

LEADER 00000naa0a2200000 4500
001 660288
005 20250828135447.0
035 |a (RuTPU)RU\TPU\network\29409 
035 |a RU\TPU\network\9154 
090 |a 660288 
100 |a 20190522d2018 k||y0engy50 ba 
101 0 |a eng 
102 |a DE 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Nanostructure-induced performance degradation of WO3·nH2O for energy conversion and storage devices  |f Zh. Hai [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 54 tit.] 
330 |a Although 2D layered nanomaterials have been intensively investigated towards their application in energy conversion and storage devices, their disadvantages have rarely been explored so far especially compared to their 3D counterparts. Herein, WO3·nH2O (n = 0, 1, 2), as the most common and important electrochemical and electrochromic active nanomaterial, is synthesized in 3D and 2D structures through a facile hydrothermal method, and the disadvantages of the corresponding 2D structures are examined. The weakness of 2D WO3·nH2O originates from its layered structure. X-ray diffraction and scanning electron microscopy analyses of as-grown WO3·nH2O samples suggest a structural transition from 2D to 3D upon temperature increase. 2D WO3·nH2O easily generates structural instabilities by 2D intercalation, resulting in a faster performance degradation, due to its weak interlayer van der Waals forces, even though it outranks the 3D network structure in terms of improved electronic properties. The structural transformation of 2D layered WO3·nH2O into 3D nanostructures is observed via ex situ Raman measurements under electrochemical cycling experiments. The proposed degradation mechanism is confirmed by the morphology changes. The work provides strong evidence for and in-depth understanding of the weakness of 2D layered nanomaterials and paves the way for further interlayer reinforcement, especially for 2D layered transition metal oxides. 
461 |t Beilstein Journal of Nanotechnology 
463 |t Vol. 9  |v [P. 2845–2854]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a 2D layered oxides 
610 1 |a nterlayer water 
610 1 |a van der Waals interaction 
610 1 |a WO3·nH2O 
610 1 |a оксиды 
701 1 |a Hai  |b Zh.  |g Zhenyin 
701 1 |a Akbari  |b M. K.  |g Mohammad Karbalaei 
701 1 |a Wei  |b Zh.  |g Zihan 
701 1 |a Cui Danfeng 
701 1 |a Xue Chenyang 
701 1 |a Xu Hongyan 
701 1 |a Heynderickx  |b P. M.  |g Philippe 
701 1 |a Verpoort  |b F. V. K.  |c Chemical Engineer  |c Professor of Tomsk Polytechnic University, doctor of chemical Sciences  |f 1963-  |g Frensis Valter Kornelius  |3 (RuTPU)RU\TPU\pers\35059  |9 18334 
701 1 |a Zhuiykov  |b S.  |g Serge 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий (ИШХБМТ)  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 2 |a RU  |b 63413507  |c 20190522  |g RCR 
856 4 |u http://dx.doi.org/10.3762/bjnano.9.265 
942 |c CF