Quanfima: An open source Python package for automated fiber analysis of biomaterials

Bibliografiset tiedot
Parent link:PLoS One
Vol. 14, iss. 4.— 2019.— [e0215137; 20 p.]
Yhteisötekijä: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы"
Muut tekijät: Shkarin R. Roman, Shkarin A. Andrei, Shkarina S. N. Svetlana Nikolaevna, Cecilia A. Angelica, Surmenev R. A. Roman Anatolievich, Surmeneva M. A. Maria Alexandrovna
Yhteenveto:Title screen
Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration. The analysis of fibers in hybrid biomaterials, especially in a 3D space is often difficult due to their various diameters (from micro to nanoscale) and compositions. Though biomaterials processing workflows are implemented, there are no software tools for fiber analysis that can be easily integrated into such workflows. Due to the demand for reproducible science with Jupyter notebooks and the broad use of the Python programming language, we have developed the new Python package quanfima offering a complete analysis of hybrid biomaterials, that include the determination of fiber orientation, fiber and/or particle diameter and porosity. Here, we evaluate the provided tensor-based approach on a range of generated datasets under various noise conditions. Also, we show its application to the X-ray tomography datasets of polycaprolactone fibrous scaffolds pure and containing silicate-substituted hydroxyapatite microparticles, hydrogels enriched with bioglass contained strontium and alpha-tricalcium phosphate microparticles for bone tissue engineering and porous cryogel 3D scaffold for pancreatic cell culturing. The results obtained with the help of the developed package demonstrated high accuracy and performance of orientation, fibers and microparticles diameter and porosity analysis.
Kieli:englanti
Julkaistu: 2019
Aiheet:
Linkit:https://doi.org/10.1371/journal.pone.0215137
Aineistotyyppi: Elektroninen Kirjan osa
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660251

MARC

LEADER 00000naa0a2200000 4500
001 660251
005 20250402132807.0
035 |a (RuTPU)RU\TPU\network\29322 
090 |a 660251 
100 |a 20190516d2019 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Quanfima: An open source Python package for automated fiber analysis of biomaterials  |f R. Shkarin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 72 tit.] 
330 |a Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration. The analysis of fibers in hybrid biomaterials, especially in a 3D space is often difficult due to their various diameters (from micro to nanoscale) and compositions. Though biomaterials processing workflows are implemented, there are no software tools for fiber analysis that can be easily integrated into such workflows. Due to the demand for reproducible science with Jupyter notebooks and the broad use of the Python programming language, we have developed the new Python package quanfima offering a complete analysis of hybrid biomaterials, that include the determination of fiber orientation, fiber and/or particle diameter and porosity. Here, we evaluate the provided tensor-based approach on a range of generated datasets under various noise conditions. Also, we show its application to the X-ray tomography datasets of polycaprolactone fibrous scaffolds pure and containing silicate-substituted hydroxyapatite microparticles, hydrogels enriched with bioglass contained strontium and alpha-tricalcium phosphate microparticles for bone tissue engineering and porous cryogel 3D scaffold for pancreatic cell culturing. The results obtained with the help of the developed package demonstrated high accuracy and performance of orientation, fibers and microparticles diameter and porosity analysis. 
461 |t PLoS One 
463 |t Vol. 14, iss. 4  |v [e0215137; 20 p.]  |d 2019 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a биоматериалы 
610 1 |a регенерация 
610 1 |a волокна 
701 1 |a Shkarin  |b R.  |g Roman 
701 1 |a Shkarin  |b A.  |g Andrei 
701 1 |a Shkarina  |b S. N.  |c specialist in the field of material science  |c Research Engineer of Tomsk Polytechnic University  |f 1989-  |g Svetlana Nikolaevna  |3 (RuTPU)RU\TPU\pers\42498 
701 1 |a Cecilia  |b A.  |g Angelica 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
801 2 |a RU  |b 63413507  |c 20190516  |g RCR 
856 4 |u https://doi.org/10.1371/journal.pone.0215137 
942 |c CF