Sten Score Method And Cluster Analysis: Identifying Respondents Vulnerable To Drug Abuse

Bibliographische Detailangaben
Parent link:The European Proceedings of Social & Behavioural Sciences (EpSBS)
Vol. 35 : Research Paradigms Transformation in Social Sciences (RPTSS 2017).— 2018.— [P. 779-789]
1. Verfasser: Lukianova N. A. Natalia Aleksandrovna
Körperschaften: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение социально-гуманитарных наук, Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Weitere Verfasser: Burkatovskaya Yu. B. Yuliya Borisovna, Fell E. V. Elena Vladimirovna
Zusammenfassung:Title screen
In this article, the authors assess the methodological reliability of big data processing in sociological research. The authors compare sten score method and cluster analysis as methods of processing the results of socio-psychological tests aimed at identifying groups of young people potentially vulnerable to drug addiction. The survey was conducted in eight universities in a city in Siberia with a large student population where 22884 students aged from 18 to 25 were questioned. First, the obtained results were processed by using the sten score method. Then, cluster analysis was conducted to define a high-risk group of students having a propensity for drug consumption. Advantages and disadvantages of the two methods for processing a large sample of data are compared. The results of this comparison demonstrate that the cluster analysis method is the most appropriate method for this type of research as it produces statistically correct data. The use of cluster analysis makes it possible to work with any type of information, both qualitative and qualitative data. On the other hand, the sten scores method can only be applied in certain conditions, i.e. where the original distribution resembles a normal distribution; where some theoretical basis to expect normal distribution exists, and where there is certainty that the normalization group is sufficiently large and representative to be a true reflection of the population.
Sprache:Englisch
Veröffentlicht: 2018
Schlagworte:
Online-Zugang:http://dx.doi.org/10.15405/epsbs.2018.02.92
http://earchive.tpu.ru/handle/11683/53272
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=660233

MARC

LEADER 00000nla2a2200000 4500
001 660233
005 20240126114904.0
035 |a (RuTPU)RU\TPU\network\29304 
035 |a RU\TPU\network\29294 
090 |a 660233 
100 |a 20190515a2018 k y0engy50 ba 
101 0 |a eng 
102 |a CH 
105 |a y z 100zy 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Sten Score Method And Cluster Analysis: Identifying Respondents Vulnerable To Drug Abuse  |f N. A. Lukianova, Yu. B. Burkatovskaya, E. V. Fell 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 788-789 (17 tit.)] 
330 |a In this article, the authors assess the methodological reliability of big data processing in sociological research. The authors compare sten score method and cluster analysis as methods of processing the results of socio-psychological tests aimed at identifying groups of young people potentially vulnerable to drug addiction. The survey was conducted in eight universities in a city in Siberia with a large student population where 22884 students aged from 18 to 25 were questioned. First, the obtained results were processed by using the sten score method. Then, cluster analysis was conducted to define a high-risk group of students having a propensity for drug consumption. Advantages and disadvantages of the two methods for processing a large sample of data are compared. The results of this comparison demonstrate that the cluster analysis method is the most appropriate method for this type of research as it produces statistically correct data. The use of cluster analysis makes it possible to work with any type of information, both qualitative and qualitative data. On the other hand, the sten scores method can only be applied in certain conditions, i.e. where the original distribution resembles a normal distribution; where some theoretical basis to expect normal distribution exists, and where there is certainty that the normalization group is sufficiently large and representative to be a true reflection of the population. 
461 0 |0 (RuTPU)RU\TPU\network\11959  |t The European Proceedings of Social & Behavioural Sciences (EpSBS) 
463 0 |0 (RuTPU)RU\TPU\network\29259  |t Vol. 35 : Research Paradigms Transformation in Social Sciences (RPTSS 2017)  |o International Conference, 18-21 May 2017, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. I. B. Ardashkin [et al.]  |v [P. 779-789]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a sten score method 
610 1 |a cluster analysis 
610 1 |a drug use 
610 1 |a drug addiction 
610 1 |a sociological research 
610 1 |a statistical information 
610 1 |a кластерный анализ 
610 1 |a наркомания 
610 1 |a социологические исследования 
610 1 |a статистическая информация 
700 1 |a Lukianova  |b N. A.  |c specialist in the field of psychology and law  |c Professor of Tomsk Polytechnic University, Doctor of philosophy sciences  |f 1971-  |g Natalia Aleksandrovna  |3 (RuTPU)RU\TPU\pers\33131  |9 16952 
701 1 |a Burkatovskaya  |b Yu. B.  |c mathematician  |c associate Professor of Tomsk Polytechnic University, candidate of physico-mathematical Sciences  |f 1973-  |g Yuliya Borisovna  |3 (RuTPU)RU\TPU\pers\36259  |9 19335 
701 1 |a Fell  |b E. V.  |c specialist in the field of law  |c Associate Professor of Tomsk Polytechnic University  |f 1975-  |g Elena Vladimirovna  |3 (RuTPU)RU\TPU\pers\33614 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Школа базовой инженерной подготовки  |b Отделение социально-гуманитарных наук  |3 (RuTPU)RU\TPU\col\23512 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 2 |a RU  |b 63413507  |c 20190517  |g RCR 
856 4 |u http://dx.doi.org/10.15405/epsbs.2018.02.92 
856 4 |u http://earchive.tpu.ru/handle/11683/53272 
942 |c CF