Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland

Bibliografiske detaljer
Parent link:Environmental Research Letters
Vol. 13, iss. 4 : Focus on Northern Eurasia in the Global Earth and Human Systems: Changes, Interactions, and Sustainable Societal Development.— 2018.— [045002, 15 p.]
Institution som forfatter: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Andre forfattere: Polishchuk Yu. M. Yury Mikhaylovich, Bogdanov A. N. Anatoly Nikolaevich, Muratov I. N. Ildar Nailjevich, Polishchuk V. Yu. Vladimir Yurjevich, Lim A. K. Anatoly Klimentjevich, Manasypov R. M. Rinat, Shirokova L. C. Liudmila, Pokrovsky O. S. Oleg Sergeevich
Summary:Title screen
Despite the potential importance of small (<?1000 m2) thaw ponds and thermokarst lakes in greenhouse gas (GHG) emissions from inland waters of high latitude and boreal regions, these features have not been fully inventoried and the volume of GHG and carbon in thermokarst lakes remains poorly constrained. This is especially true for the vast Western Siberia Lowland (WSL) which is subject to strong thermokarst activity. We assessed the number of thermokarst lakes and their size distribution for the permafrost-affected WSL territory based on a combination of medium-resolution Landsat-8 images and high-resolution Kanopus-V scenes on 78 test sites across the WSL in a wide range of lake sizes (from 20 to 2???108 m2). The results were in fair agreement with other published data for world lakes including those in circum-polar regions. Based on available measurements of CH4, CO2, and dissolved organic carbon (DOC) in thermokarst lakes and thaw ponds of the permafrost-affected part of the WSL, we found an inverse relationship between lake size and concentration, with concentrations of GHGs and DOC being highest in small thaw ponds. However, since these small ponds represent only a tiny fraction of the landscape (i.e. ~1.5% of the total lake area), their contribution to the total pool of GHG and DOC in inland lentic water of the permafrost-affected part of the WSL is less than 2%. As such, despite high concentrations of DOC and GHG in small ponds, their role in overall C storage can be negated. Ongoing lake drainage due to climate warming and permafrost thaw in the WSL may lead to a decrease in GHG emission potential from inland waters and DOC release from lakes to rivers.
Sprog:engelsk
Udgivet: 2018
Fag:
Online adgang:https://doi.org/10.1088/1748-9326/aab046
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659991

MARC

LEADER 00000naa0a2200000 4500
001 659991
005 20250828092456.0
035 |a (RuTPU)RU\TPU\network\28861 
035 |a RU\TPU\network\28216 
090 |a 659991 
100 |a 20190415d2018 k y0engy50 ba 
101 0 |a eng 
102 |a GB 
135 |a vrcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland  |f Yu. M. Polishchuk [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Despite the potential importance of small (<?1000 m2) thaw ponds and thermokarst lakes in greenhouse gas (GHG) emissions from inland waters of high latitude and boreal regions, these features have not been fully inventoried and the volume of GHG and carbon in thermokarst lakes remains poorly constrained. This is especially true for the vast Western Siberia Lowland (WSL) which is subject to strong thermokarst activity. We assessed the number of thermokarst lakes and their size distribution for the permafrost-affected WSL territory based on a combination of medium-resolution Landsat-8 images and high-resolution Kanopus-V scenes on 78 test sites across the WSL in a wide range of lake sizes (from 20 to 2???108 m2). The results were in fair agreement with other published data for world lakes including those in circum-polar regions. Based on available measurements of CH4, CO2, and dissolved organic carbon (DOC) in thermokarst lakes and thaw ponds of the permafrost-affected part of the WSL, we found an inverse relationship between lake size and concentration, with concentrations of GHGs and DOC being highest in small thaw ponds. However, since these small ponds represent only a tiny fraction of the landscape (i.e. ~1.5% of the total lake area), their contribution to the total pool of GHG and DOC in inland lentic water of the permafrost-affected part of the WSL is less than 2%. As such, despite high concentrations of DOC and GHG in small ponds, their role in overall C storage can be negated. Ongoing lake drainage due to climate warming and permafrost thaw in the WSL may lead to a decrease in GHG emission potential from inland waters and DOC release from lakes to rivers. 
461 |t Environmental Research Letters 
463 |t Vol. 13, iss. 4 : Focus on Northern Eurasia in the Global Earth and Human Systems: Changes, Interactions, and Sustainable Societal Development  |v [045002, 15 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a внутренние воды 
610 1 |a вечная мерзлота 
610 1 |a оттепель 
610 1 |a Западно-Сибирская низменность 
701 1 |a Polishchuk  |b Yu. M.  |g Yury Mikhaylovich 
701 1 |a Bogdanov  |b A. N.  |g Anatoly Nikolaevich 
701 1 |a Muratov  |b I. N.  |g Ildar Nailjevich 
701 1 |a Polishchuk  |b V. Yu.  |c specialist in the field of informatics and computer technology  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1987-  |g Vladimir Yurjevich  |3 (RuTPU)RU\TPU\pers\40478  |9 21310 
701 1 |a Lim  |b A. K.  |g Anatoly Klimentjevich 
701 1 |a Manasypov  |b R. M.  |g Rinat 
701 1 |a Shirokova  |b L. C.  |g Liudmila 
701 1 |a Pokrovsky  |b O. S.  |g Oleg Sergeevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 2 |a RU  |b 63413507  |c 20190415  |g RCR 
856 4 |u https://doi.org/10.1088/1748-9326/aab046 
942 |c CF