3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study

Bibliografski detalji
Parent link:Scientific Reports
Vol. 8.— 2018.— [8907, 13 p.]
Autor kompanije: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы"
Daljnji autori: Shkarina S. N. Svetlana Nikolaevna, Shkarin R. Roman, Weinhardt V. Venera, Melnik E. Elizaveta, Vacun G. Gabriele, Kluger P. J. Petra Juliane, Loza K. Kateryna, Epple M. Matthias, Ivlev S. I. Sergei, Baumbach T. Tilo, Surmeneva M. A. Maria Alexandrovna, Surmenev R. A. Roman Anatolievich
Sažetak:Title screen
To date, special interest has been paid to composite scaffolds based on polymers enriched with hydroxyapatite (HA). However, the role of HA containing different trace elements such as silicate in the structure of a polymer scaffold has not yet been fully explored. Here, we report the potential use of silicate-containing hydroxyapatite (SiHA) microparticles and microparticle aggregates in the predominant range from 2.23 to 12.40?µm in combination with polycaprolactone (PCL) as a hybrid scaffold with randomly oriented and well-aligned microfibers for regeneration of bone tissue. Chemical and mechanical properties of the developed 3D scaffolds were investigated with XRD, FTIR, EDX and tensile testing. Furthermore, the internal structure and surface morphology of the scaffolds were analyzed using synchrotron X-ray µCT and SEM. Upon culturing human mesenchymal stem cells (hMSC) on PCL-SiHA scaffolds, we found that both SiHA inclusion and microfiber orientation affected cell adhesion. The best hMSCs viability was revealed at 10?day for the PCL-SiHA scaffolds with well-aligned structure (~82%). It is expected that novel hybrid scaffolds of PCL will improve tissue ingrowth in vivo due to hydrophilic SiHA microparticles in combination with randomly oriented and well-aligned PCL microfibers, which mimic the structure of extracellular matrix of bone tissue.
Jezik:engleski
Izdano: 2018
Teme:
Online pristup:https://doi.org/10.1038/s41598-018-27097-7
Format: Elektronički Poglavlje knjige
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659731

MARC

LEADER 00000naa0a2200000 4500
001 659731
005 20250326161819.0
035 |a (RuTPU)RU\TPU\network\28502 
035 |a RU\TPU\network\27512 
090 |a 659731 
100 |a 20190326d2018 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study  |f S. N. Shkarina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 62 tit.] 
330 |a To date, special interest has been paid to composite scaffolds based on polymers enriched with hydroxyapatite (HA). However, the role of HA containing different trace elements such as silicate in the structure of a polymer scaffold has not yet been fully explored. Here, we report the potential use of silicate-containing hydroxyapatite (SiHA) microparticles and microparticle aggregates in the predominant range from 2.23 to 12.40?µm in combination with polycaprolactone (PCL) as a hybrid scaffold with randomly oriented and well-aligned microfibers for regeneration of bone tissue. Chemical and mechanical properties of the developed 3D scaffolds were investigated with XRD, FTIR, EDX and tensile testing. Furthermore, the internal structure and surface morphology of the scaffolds were analyzed using synchrotron X-ray µCT and SEM. Upon culturing human mesenchymal stem cells (hMSC) on PCL-SiHA scaffolds, we found that both SiHA inclusion and microfiber orientation affected cell adhesion. The best hMSCs viability was revealed at 10?day for the PCL-SiHA scaffolds with well-aligned structure (~82%). It is expected that novel hybrid scaffolds of PCL will improve tissue ingrowth in vivo due to hydrophilic SiHA microparticles in combination with randomly oriented and well-aligned PCL microfibers, which mimic the structure of extracellular matrix of bone tissue. 
461 |t Scientific Reports 
463 |t Vol. 8  |v [8907, 13 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a биоразлагаемые материалы 
610 1 |a 3D 
610 1 |a поликапролактон 
610 1 |a силикатсодержащие сырьевые материалы 
610 1 |a микрочастицы 
610 1 |a гидроксиапатиты 
610 1 |a костные ткани 
610 1 |a инженерия 
610 1 |a томография 
701 1 |a Shkarina  |b S. N.  |c specialist in the field of material science  |c Research Engineer of Tomsk Polytechnic University  |f 1989-  |g Svetlana Nikolaevna  |3 (RuTPU)RU\TPU\pers\42498 
701 1 |a Shkarin  |b R.  |g Roman 
701 1 |a Weinhardt  |b V.  |g Venera 
701 1 |a Melnik  |b E.  |g Elizaveta 
701 1 |a Vacun  |b G.  |g Gabriele 
701 1 |a Kluger  |b P. J.  |g Petra Juliane 
701 1 |a Loza  |b K.  |g Kateryna 
701 1 |a Epple  |b M.  |g Matthias 
701 1 |a Ivlev  |b S. I.  |g Sergei 
701 1 |a Baumbach  |b T.  |g Tilo 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
801 2 |a RU  |b 63413507  |c 20190326  |g RCR 
856 4 |u https://doi.org/10.1038/s41598-018-27097-7 
942 |c CF