Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications

Bibliographic Details
Parent link:Journal of the Mechanical Behavior of Biomedical Materials
Vol. 86.— 2018.— [P. 240-249]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения
Other Authors: Sharipova A. R. Aliya Rashitovna, Swain S. K. Sanjaya, Gotman I. Irina, Starosvetsky D., Psakhie S. G. Sergey Grigorievich, Unger R. E. Ronald, Gutmanas E. Elazar
Summary:Title screen
An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-Ag2O powder blends followed by cold sintering – high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550?°C resulted in enhanced ductility without coarsening the nanostructure. The strength in compression of Fe5Ag and Fe10Ag nanocomposites was several-fold higher than the values reported for similar composites with micrometer grain size. The galvanic action of finely dispersed Ag nanoparticles greatly increased the corrosion rate and degradation kinetics of iron. Following four weeks immersion of Fe-Ag nanocomposites in saline solution, a more than 10% weight loss accompanied by less than 25% decrease in bending strength were measured. The interconnected nanoporosity of cold sintered Fe-Ag nanocomposites was utilized for incorporation of vancomycin that was gradually released upon immersion. In cell culture experiments, the Fe-Ag nanocomposites supported the attachment of osteoblast cells and exhibited no signs of cytotoxicity. The results suggest that the proposed Fe-Ag nanocomposites could be developed into attractive biodegradable load-bearing implant materials with drug delivery capability.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.1016/j.jmbbm.2018.06.037
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659696

MARC

LEADER 00000naa0a2200000 4500
001 659696
005 20250326151443.0
035 |a (RuTPU)RU\TPU\network\28423 
035 |a RU\TPU\network\4126 
090 |a 659696 
100 |a 20190320a2018 k y0engy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Mechanical, degradation and drug-release behavior of nano-grained Fe-Ag composites for biomedical applications  |f A. R. Sharipova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-Ag2O powder blends followed by cold sintering – high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550?°C resulted in enhanced ductility without coarsening the nanostructure. The strength in compression of Fe5Ag and Fe10Ag nanocomposites was several-fold higher than the values reported for similar composites with micrometer grain size. The galvanic action of finely dispersed Ag nanoparticles greatly increased the corrosion rate and degradation kinetics of iron. Following four weeks immersion of Fe-Ag nanocomposites in saline solution, a more than 10% weight loss accompanied by less than 25% decrease in bending strength were measured. The interconnected nanoporosity of cold sintered Fe-Ag nanocomposites was utilized for incorporation of vancomycin that was gradually released upon immersion. In cell culture experiments, the Fe-Ag nanocomposites supported the attachment of osteoblast cells and exhibited no signs of cytotoxicity. The results suggest that the proposed Fe-Ag nanocomposites could be developed into attractive biodegradable load-bearing implant materials with drug delivery capability. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of the Mechanical Behavior of Biomedical Materials 
463 |t Vol. 86  |v [P. 240-249]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a load bearing 
610 1 |a biodegradable 
610 1 |a iron-silver 
610 1 |a nanocomposite 
610 1 |a drug release 
610 1 |a cell culture 
610 1 |a нанокомпозиты 
610 1 |a подшипники 
610 1 |a нагрузки 
701 1 |a Sharipova  |b A. R.  |g Aliya Rashitovna 
701 1 |a Swain  |b S. K.  |g Sanjaya 
701 1 |a Gotman  |b I.  |c Specialist in the field of material science  |c Leading researcher of Tomsk Polytechnic University  |f 1957-  |g Irina  |3 (RuTPU)RU\TPU\pers\37811 
701 1 |a Starosvetsky  |b D. 
701 1 |a Psakhie  |b S. G.  |c physicist  |c head of laboratory, Advisor to the rector, head of Department, Tomsk Polytechnic University, doctor of physico-mathematical Sciences  |f 1952-2018  |g Sergey Grigorievich  |3 (RuTPU)RU\TPU\pers\33038 
701 1 |a Unger  |b R. E.  |g Ronald 
701 1 |a Gutmanas  |b E.  |g Elazar 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Отделение материаловедения  |3 (RuTPU)RU\TPU\col\23508 
801 2 |a RU  |b 63413507  |c 20190320  |g RCR 
856 4 |u https://doi.org/10.1016/j.jmbbm.2018.06.037 
942 |c CF