Terahertz Amplitude Polynomial Principle Component Regression for Aramid–Basalt Hybrid Composite Laminate Inspection

Bibliografiset tiedot
Parent link:IEEE Transactions on Industrial Informatics
Vol. 14, iss. 12.— 2018.— [P. 5601-5609]
Yhteisötekijä: Национальный исследовательский Томский политехнический университет Инженерная школа неразрушающего контроля и безопасности Центр промышленной томографии Научно-производственная лаборатория "Тепловой контроль"
Muut tekijät: Zhang Hai, Sfarra S. Stefano, Osman A. Ahmad, Szielasko K. Klaus, Stumm Ch. Christopher, Sarasini F. Fabrizio, Santulli C. Carlo, Maldague X. Xavier
Yhteenveto:Title screen
As an emerging nondestructive diagnostic and monitoring technique, terahertz time-domain spectroscopy (THz-TDS) imagery is attracting more attention. In this regard, new THz image processing algorithms based on infrared thermography (IRT) concepts are greatly needed, since most IRT imagery modalities are fast for in-line industrial inspection. However, this scenario is difficult due to some physical constraints to be reached, although this idea should be followed to avoid the loss of useful information during image processing. In this paper, a novel THz amplitude polynomial principle component regression (APPCR) algorithm is proposed for the inspection of aramid-basalt hybrid composite laminates. This algorithm segments THz amplitude-frequency curves to simulate heating-up and cooling-down behaviors as in IRT; in addition, it uses an empirical orthogonal functions-based principle component regression modality to simplify the THz image analysis procedure. This experimental and analytical study shows that APPCR can, first, simplify the THz image analysis procedure, and second, enhance image contrast and spatial resolution. A theoretical analysis was conducted as experimental explanation, while the IRT imagery results were used for comparative purposes. In addition, signal-to-noise ratio analysis was used to evaluate quantitatively the image enhancement. Finally, it is possible to conclude that THz is more suitable to inspect transparent or semitransparent materials. Advantages and disadvantages of THz-TDS and IRT are summarized in the text.
Режим доступа: по договору с организацией-держателем ресурса
Kieli:englanti
Julkaistu: 2018
Aiheet:
Linkit:https://doi.org/10.1109/TII.2018.2870670
Aineistotyyppi: Elektroninen Kirjan osa
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659688

MARC

LEADER 00000naa0a2200000 4500
001 659688
005 20250326150501.0
035 |a (RuTPU)RU\TPU\network\28415 
035 |a RU\TPU\network\27340 
090 |a 659688 
100 |a 20190320d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Terahertz Amplitude Polynomial Principle Component Regression for Aramid–Basalt Hybrid Composite Laminate Inspection  |f Zhang Hai [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 29 tit.] 
330 |a As an emerging nondestructive diagnostic and monitoring technique, terahertz time-domain spectroscopy (THz-TDS) imagery is attracting more attention. In this regard, new THz image processing algorithms based on infrared thermography (IRT) concepts are greatly needed, since most IRT imagery modalities are fast for in-line industrial inspection. However, this scenario is difficult due to some physical constraints to be reached, although this idea should be followed to avoid the loss of useful information during image processing. In this paper, a novel THz amplitude polynomial principle component regression (APPCR) algorithm is proposed for the inspection of aramid-basalt hybrid composite laminates. This algorithm segments THz amplitude-frequency curves to simulate heating-up and cooling-down behaviors as in IRT; in addition, it uses an empirical orthogonal functions-based principle component regression modality to simplify the THz image analysis procedure. This experimental and analytical study shows that APPCR can, first, simplify the THz image analysis procedure, and second, enhance image contrast and spatial resolution. A theoretical analysis was conducted as experimental explanation, while the IRT imagery results were used for comparative purposes. In addition, signal-to-noise ratio analysis was used to evaluate quantitatively the image enhancement. Finally, it is possible to conclude that THz is more suitable to inspect transparent or semitransparent materials. Advantages and disadvantages of THz-TDS and IRT are summarized in the text. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t IEEE Transactions on Industrial Informatics 
463 |t Vol. 14, iss. 12  |v [P. 5601-5609]  |d 2018 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a composite 
610 1 |a infrared 
610 1 |a polynomial 
610 1 |a terahertz 
610 1 |a композиты 
701 0 |a Zhang Hai 
701 1 |a Sfarra  |b S.  |c specialist in the field of non-destructive testing  |c Researcher of Tomsk Polytechnic University  |f 1979-  |g Stefano  |3 (RuTPU)RU\TPU\pers\38660 
701 1 |a Osman  |b A.  |g Ahmad 
701 1 |a Szielasko  |b K.  |g Klaus 
701 1 |a Stumm  |b Ch.  |g Christopher 
701 1 |a Sarasini  |b F.  |g Fabrizio 
701 1 |a Santulli  |b C.  |g Carlo 
701 1 |a Maldague  |b X.  |g Xavier 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа неразрушающего контроля и безопасности  |b Центр промышленной томографии  |b Научно-производственная лаборатория "Тепловой контроль"  |3 (RuTPU)RU\TPU\col\23838 
801 1 |a RU  |b 63413507  |c 20110823 
801 2 |a RU  |b 63413507  |c 20190320  |g RCR 
856 4 0 |u https://doi.org/10.1109/TII.2018.2870670 
942 |c CF