Heating and evaporation of suspended water droplets: Experimental studies and modelling

Dades bibliogràfiques
Parent link:International Journal of Heat and Mass Transfer
Vol. 127, Pt. A.— 2018.— [P. 92-106]
Autor corporatiu: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Altres autors: Strizhak P. A. Pavel Alexandrovich, Volkov R. S. Roman Sergeevich, Castanet G. Guillaume, Lemoine F. Fabrice, Rybdylova O. Oyuna, Sazhin S. S. Sergey Stepanovich
Sumari:Title screen
The results of a series of experiments focused on investigation of the heating and evaporation of suspended water droplets in a hot air flow (at temperatures up to 800?°C) are described. The temperatures inside droplets were estimated based on Planar Laser-Induced Fluorescence (PLIF) imaging. The advantages and limitations of this method are investigated. Typical distributions of temperatures inside droplets at the initial stages of their heating and evaporation are presented. These distributions at various cross-sections are compared. They are shown to be strongly inhomogeneous during the whole period of observation. A new model for heating and evaporation of a suspended droplet, taking into account temperature gradient and recirculation inside the droplet and the effect of a supporting rod, is suggested. It is assumed that the heat transferred from the rod to the suspended droplet is homogeneously distributed inside the droplet; its effect is modelled similarly to the effect of external thermal radiation, using the previously developed model for droplet heating in the presence of this radiation. It is shown that a reasonable agreement between the model predictions and experimental data can be achieved if the reduction of the ambient gas temperature due to the presence of an evaporating droplet is taken into account. The effect of the rod on droplet heating is shown to be most significant for ambient gas temperature equal to 100?°C and becomes negligibly small when the gas temperature reaches 800?°C.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2018
Matèries:
Accés en línia:https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.103
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659650

MARC

LEADER 00000naa0a2200000 4500
001 659650
005 20250324162342.0
035 |a (RuTPU)RU\TPU\network\28319 
035 |a RU\TPU\network\27203 
090 |a 659650 
100 |a 20190313d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Heating and evaporation of suspended water droplets: Experimental studies and modelling  |f P. A. Strizhak [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 40 tit.] 
330 |a The results of a series of experiments focused on investigation of the heating and evaporation of suspended water droplets in a hot air flow (at temperatures up to 800?°C) are described. The temperatures inside droplets were estimated based on Planar Laser-Induced Fluorescence (PLIF) imaging. The advantages and limitations of this method are investigated. Typical distributions of temperatures inside droplets at the initial stages of their heating and evaporation are presented. These distributions at various cross-sections are compared. They are shown to be strongly inhomogeneous during the whole period of observation. A new model for heating and evaporation of a suspended droplet, taking into account temperature gradient and recirculation inside the droplet and the effect of a supporting rod, is suggested. It is assumed that the heat transferred from the rod to the suspended droplet is homogeneously distributed inside the droplet; its effect is modelled similarly to the effect of external thermal radiation, using the previously developed model for droplet heating in the presence of this radiation. It is shown that a reasonable agreement between the model predictions and experimental data can be achieved if the reduction of the ambient gas temperature due to the presence of an evaporating droplet is taken into account. The effect of the rod on droplet heating is shown to be most significant for ambient gas temperature equal to 100?°C and becomes negligibly small when the gas temperature reaches 800?°C. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t International Journal of Heat and Mass Transfer 
463 |t Vol. 127, Pt. A  |v [P. 92-106]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a water droplets 
610 1 |a droplet heating and evaporation 
610 1 |a mathematical model 
610 1 |a model validation 
610 1 |a капли 
610 1 |a воды 
610 1 |a нагревание 
610 1 |a испарение 
610 1 |a математические модели 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
701 1 |a Volkov  |b R. S.  |c specialist in the field of power engineering  |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences  |f 1987-  |g Roman Sergeevich  |3 (RuTPU)RU\TPU\pers\33926  |9 17499 
701 1 |a Castanet  |b G.  |g Guillaume 
701 1 |a Lemoine  |b F.  |g Fabrice 
701 1 |a Rybdylova  |b O.  |g Oyuna 
701 1 |a Sazhin  |b S. S.  |c geophysicist  |c Leading researcher at Tomsk Polytechnic University, PhD in Physics and Mathematics  |f 1949-  |g Sergey Stepanovich  |9 88718 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20190313  |g RCR 
856 4 |u https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.103 
942 |c CF