Heating and evaporation of suspended water droplets: Experimental studies and modelling
| Parent link: | International Journal of Heat and Mass Transfer Vol. 127, Pt. A.— 2018.— [P. 92-106] |
|---|---|
| Autor corporatiu: | |
| Altres autors: | , , , , , |
| Sumari: | Title screen The results of a series of experiments focused on investigation of the heating and evaporation of suspended water droplets in a hot air flow (at temperatures up to 800?°C) are described. The temperatures inside droplets were estimated based on Planar Laser-Induced Fluorescence (PLIF) imaging. The advantages and limitations of this method are investigated. Typical distributions of temperatures inside droplets at the initial stages of their heating and evaporation are presented. These distributions at various cross-sections are compared. They are shown to be strongly inhomogeneous during the whole period of observation. A new model for heating and evaporation of a suspended droplet, taking into account temperature gradient and recirculation inside the droplet and the effect of a supporting rod, is suggested. It is assumed that the heat transferred from the rod to the suspended droplet is homogeneously distributed inside the droplet; its effect is modelled similarly to the effect of external thermal radiation, using the previously developed model for droplet heating in the presence of this radiation. It is shown that a reasonable agreement between the model predictions and experimental data can be achieved if the reduction of the ambient gas temperature due to the presence of an evaporating droplet is taken into account. The effect of the rod on droplet heating is shown to be most significant for ambient gas temperature equal to 100?°C and becomes negligibly small when the gas temperature reaches 800?°C. Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | anglès |
| Publicat: |
2018
|
| Matèries: | |
| Accés en línia: | https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.103 |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659650 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 659650 | ||
| 005 | 20250324162342.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\28319 | ||
| 035 | |a RU\TPU\network\27203 | ||
| 090 | |a 659650 | ||
| 100 | |a 20190313d2018 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Heating and evaporation of suspended water droplets: Experimental studies and modelling |f P. A. Strizhak [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 40 tit.] | ||
| 330 | |a The results of a series of experiments focused on investigation of the heating and evaporation of suspended water droplets in a hot air flow (at temperatures up to 800?°C) are described. The temperatures inside droplets were estimated based on Planar Laser-Induced Fluorescence (PLIF) imaging. The advantages and limitations of this method are investigated. Typical distributions of temperatures inside droplets at the initial stages of their heating and evaporation are presented. These distributions at various cross-sections are compared. They are shown to be strongly inhomogeneous during the whole period of observation. A new model for heating and evaporation of a suspended droplet, taking into account temperature gradient and recirculation inside the droplet and the effect of a supporting rod, is suggested. It is assumed that the heat transferred from the rod to the suspended droplet is homogeneously distributed inside the droplet; its effect is modelled similarly to the effect of external thermal radiation, using the previously developed model for droplet heating in the presence of this radiation. It is shown that a reasonable agreement between the model predictions and experimental data can be achieved if the reduction of the ambient gas temperature due to the presence of an evaporating droplet is taken into account. The effect of the rod on droplet heating is shown to be most significant for ambient gas temperature equal to 100?°C and becomes negligibly small when the gas temperature reaches 800?°C. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t International Journal of Heat and Mass Transfer | ||
| 463 | |t Vol. 127, Pt. A |v [P. 92-106] |d 2018 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a water droplets | |
| 610 | 1 | |a droplet heating and evaporation | |
| 610 | 1 | |a mathematical model | |
| 610 | 1 | |a model validation | |
| 610 | 1 | |a капли | |
| 610 | 1 | |a воды | |
| 610 | 1 | |a нагревание | |
| 610 | 1 | |a испарение | |
| 610 | 1 | |a математические модели | |
| 701 | 1 | |a Strizhak |b P. A. |c Specialist in the field of heat power energy |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) |f 1985- |g Pavel Alexandrovich |3 (RuTPU)RU\TPU\pers\30871 |9 15117 | |
| 701 | 1 | |a Volkov |b R. S. |c specialist in the field of power engineering |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences |f 1987- |g Roman Sergeevich |3 (RuTPU)RU\TPU\pers\33926 |9 17499 | |
| 701 | 1 | |a Castanet |b G. |g Guillaume | |
| 701 | 1 | |a Lemoine |b F. |g Fabrice | |
| 701 | 1 | |a Rybdylova |b O. |g Oyuna | |
| 701 | 1 | |a Sazhin |b S. S. |c geophysicist |c Leading researcher at Tomsk Polytechnic University, PhD in Physics and Mathematics |f 1949- |g Sergey Stepanovich |9 88718 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа физики высокоэнергетических процессов |c (2017- ) |3 (RuTPU)RU\TPU\col\23551 |
| 801 | 2 | |a RU |b 63413507 |c 20190313 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.103 | |
| 942 | |c CF | ||