Impact toughness of nanocomposite materials filled with fullerene c60particles

Մատենագիտական մանրամասներ
Parent link:Composites: Mechanics, Computations, Applications: An International Journal
Vol. 9, iss. 2.— 2018.— [P. 141-161]
Համատեղ հեղինակ: Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения
Այլ հեղինակներ: Buketov A. V. Andrey Viktorovich, Sapronov A. A. Aleksandr Aleksandrovich, Buketova N. N. Nataljya, Mykola B. Brailo, Marushchak P. O. Pavel Orestovich, Panin S. V. Sergey Viktorovich, Amelin M. Yu.
Ամփոփում:Title screen
The dynamics of fracture of epoxy composites on various loadings of fullerene C60 particles was investigated. Epoxy diane oligomer ED-20 was employed as the basic bonding agent in composite formation. It is characterized by its ability of providing high adhesion and cohesive strengths, easy processibility, as well as low coating shrinkage on deposition onto long-length surfaces of complex profile parts. Polyethylene polyamine (PEPA) was used for cross-linking of the epoxy composites, which made it possible to carry out the curing process at room temperature. With the use of IR spectral analysis, the nucleation of new links at the polymer–filler interface was determined, which was implied to result from the improved chemical activity of the dispersed particle surface. It is confirmed by the shift of the absorption bands as well as by the increase in the transmission rate intensity, half-width, and in the relative area of absorption bands. The loading of nanoparticles into the epoxy binder at the optimal content of q = 0.025 parts by weight (pts.wt.) allows one to improve the impact toughness by 2.5 times in contrast with the neat epoxy matrix. With the use of an RKP-300 impact pendulum machine for high-rate bending, the characteristic fracture stages of epoxy nanocomposites were revealed in regard to: i) crack initiation, ii) crack growth, and iii) the fracture point. The use of the VUHI-CHARPY data processing software made it possible to determine the components of fracture energy of the corresponding failure stages. The fracture surface of the nanocomposite materials was investigated with the use of optical and scanning electron microscopy (SEM). By the analysis of SEM micrographs of the fracture surface the homogeneous topology at the nanoscale formed through the action of the particles as a stopper system was revealed. The latter provides the retardation of microcrack propagation processes in the material bulk.
Режим доступа: по договору с организацией-держателем ресурса
Լեզու:անգլերեն
Հրապարակվել է: 2018
Խորագրեր:
Առցանց հասանելիություն:https://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30
Ձևաչափ: Էլեկտրոնային Գրքի գլուխ
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659580

MARC

LEADER 00000naa0a2200000 4500
001 659580
005 20250321172340.0
035 |a (RuTPU)RU\TPU\network\28195 
035 |a RU\TPU\network\24900 
090 |a 659580 
100 |a 20190304d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Impact toughness of nanocomposite materials filled with fullerene c60particles  |f A. V. Buketov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a The dynamics of fracture of epoxy composites on various loadings of fullerene C60 particles was investigated. Epoxy diane oligomer ED-20 was employed as the basic bonding agent in composite formation. It is characterized by its ability of providing high adhesion and cohesive strengths, easy processibility, as well as low coating shrinkage on deposition onto long-length surfaces of complex profile parts. Polyethylene polyamine (PEPA) was used for cross-linking of the epoxy composites, which made it possible to carry out the curing process at room temperature. With the use of IR spectral analysis, the nucleation of new links at the polymer–filler interface was determined, which was implied to result from the improved chemical activity of the dispersed particle surface. It is confirmed by the shift of the absorption bands as well as by the increase in the transmission rate intensity, half-width, and in the relative area of absorption bands. The loading of nanoparticles into the epoxy binder at the optimal content of q = 0.025 parts by weight (pts.wt.) allows one to improve the impact toughness by 2.5 times in contrast with the neat epoxy matrix. With the use of an RKP-300 impact pendulum machine for high-rate bending, the characteristic fracture stages of epoxy nanocomposites were revealed in regard to: i) crack initiation, ii) crack growth, and iii) the fracture point. The use of the VUHI-CHARPY data processing software made it possible to determine the components of fracture energy of the corresponding failure stages. The fracture surface of the nanocomposite materials was investigated with the use of optical and scanning electron microscopy (SEM). By the analysis of SEM micrographs of the fracture surface the homogeneous topology at the nanoscale formed through the action of the particles as a stopper system was revealed. The latter provides the retardation of microcrack propagation processes in the material bulk. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Composites: Mechanics, Computations, Applications: An International Journal 
463 |t Vol. 9, iss. 2  |v [P. 141-161]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a fullerene C60 
610 1 |a epoxy composite 
610 1 |a IR-spectral analysis 
610 1 |a impact toughness 
610 1 |a optical microscopy 
610 1 |a scanning electron microscopy 
610 1 |a scanning electron microscopy 
610 1 |a fracture 
610 1 |a crack propagation 
610 1 |a coating 
610 1 |a deck machinery 
610 1 |a vessel shafting 
610 1 |a фуллерены 
610 1 |a эпоксидные композиты 
610 1 |a ИК-спектрометрический метод 
610 1 |a ударная вязкость 
610 1 |a оптическая микроскопия 
610 1 |a трещины 
610 1 |a переломы 
701 1 |a Buketov  |b A. V.  |g Andrey Viktorovich 
701 1 |a Sapronov  |b A. A.  |g Aleksandr Aleksandrovich 
701 1 |a Buketova  |b N. N.  |g Nataljya 
701 1 |a Mykola  |b B.  |g Brailo 
701 1 |a Marushchak  |b P. O.  |g Pavel Orestovich 
701 1 |a Panin  |b S. V.  |c specialist in the field of material science  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1971-  |g Sergey Viktorovich  |3 (RuTPU)RU\TPU\pers\32910  |9 16758 
701 1 |a Amelin  |b M. Yu. 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Отделение материаловедения  |3 (RuTPU)RU\TPU\col\23508 
801 2 |a RU  |b 63413507  |c 20190312  |g RCR 
856 4 |u https://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30 
942 |c CF