Comparative investigations of structure and properties of micro-arc wollastonite-calcium phosphate coatings on titanium and zirconium-niobium alloy
| Parent link: | Bioactive Materials Vol. 2, iss. 3.— 2017.— [P. 177-184] |
|---|---|
| Співавтори: | Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов, Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий (ИШХБМТ) |
| Інші автори: | Sedelnikova M. B. Mariya Borisovna, Komarova E. G. Elena Gennadjevna, Sharkeev Yu. P. Yury Petrovich, Tolkacheva T. V. Tatjyana Viktorovna, Khlusov I. A. Igor Albertovich, Litvinova L. S. Larisa Sergeevna, Yurova K. A. Kristina Alekseevna, Shupletsova V. V. Valeria Vladimirovna |
| Резюме: | Title screen Investigation results of micro-arc wollastonite–calcium phosphate (W–CaP) biocoatings on the pure titanium (Ti) and Zr–1wt.%Nb (Zr–1Nb) alloy were presented. The voltages of 150–300 V generate the micro-arc oxidation (MAO) process with the initial amplitude current of 150–550 A and 100–350 A for Ti and Zr–1Nb substrates, respectively. The identical dependencies of changes of the coating thickness, surface roughness and adhesion strength on the process voltage were revealed for the both substrates. The W–CaP coatings with the thickness of 10–11 ?m were formed on Ti and Zr–1Nb under the low process voltage of 130–150 V. Elongated wollastonite particles with the size in the range of 40–100 ?m were observed in such coatings. The structure of the coatings on Ti was presented by the X–ray amorphous and crystalline phases. The X–ray reflexes relating to the crystalline phases of Ti and wollastonite were observed only in XRD patterns of the coatings deposited under 130–200 V on Ti. While, the crystalline structure with phases of CaZr4(PO4)6, ?–ZrP2O7, ZrO2, and Zr was detected in the coatings on Zr–1Nb. FT–IRS, XRD, SEM, and TEM data confirmed that the increase of the process voltage to 300 V leads to the dissociation of the wollastonite. No toxic effect of specimens on a viability, morphology and motility of human adipose–derived multipotent mesenchymal stem cells was revealed in vitro. |
| Опубліковано: |
2017
|
| Предмети: | |
| Онлайн доступ: | https://doi.org/10.1016/j.bioactmat.2017.01.002 |
| Формат: | Електронний ресурс Частина з книги |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659545 |
Схожі ресурси
Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance
Опубліковано: (2021)
Опубліковано: (2021)
The Role of Microparticles of β-TCP and Wollastonite in the Creation of Biocoatings on Mg0.8Ca Alloy
Опубліковано: (2023)
Опубліковано: (2023)
Formation and Properties of Micro-arc Wollastonite-Calcium Phosphate Coatings on Titanium and Zirconium-Niobium Alloy
Опубліковано: (2016)
Опубліковано: (2016)
Effect of ultrasonic power applied to micro-arc oxidation on the morphology, chemistry, wettability and electrical properties of calcium phosphate coatings on titanium
Опубліковано: (2025)
Опубліковано: (2025)
Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating
Опубліковано: (2019)
Опубліковано: (2019)
Antibacterial Calcium Phosphate Coatings for Biomedical Applications Fabricated via Micro-Arc Oxidation
Опубліковано: (2023)
Опубліковано: (2023)
Structure and properties of the wollastonite–calcium phosphate coatings deposited on titanium and titanium–niobium alloy using microarc oxidation method
Опубліковано: (2016)
Опубліковано: (2016)
Zn-, Cu- or Ag-incorporated micro-arc coatings on titanium alloys: Properties and behavior in synthetic biological media
Опубліковано: (2019)
Опубліковано: (2019)
Composite Biphase Coatings Formed by Hybrid Technology for Biomedical Applications
Опубліковано: (2020)
Опубліковано: (2020)
The effect of pulsed electron irradiation on the structure, phase composition, adhesion and corrosion properties of calcium phosphate coating on Mg0.8Ca alloy
Опубліковано: (2023)
Опубліковано: (2023)
Formation and properties of micro-arc wollastonite-calcium phosphate coatings on titanium and zirconium-niobium alloy
Опубліковано: (2016)
Опубліковано: (2016)
A review of plasma-assisted methods for calcium phosphate-based coatings fabrication
за авторством: Surmenev R. A. Roman Anatolievich
Опубліковано: (2012)
за авторством: Surmenev R. A. Roman Anatolievich
Опубліковано: (2012)
Modification of Calcium Phosphate Microarc Coatings Surface by Boehmite Nanoparticles
за авторством: Chebodaeva V. V. Valentina Vadimovna
Опубліковано: (2017)
за авторством: Chebodaeva V. V. Valentina Vadimovna
Опубліковано: (2017)
Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives
Опубліковано: (2018)
Опубліковано: (2018)
The preparation of calcium phosphate coatings on titanium and nickel-titanium by rf-magnetron-sputtered deposition: Composition, structure and micromechanical properties
Опубліковано: (2008)
Опубліковано: (2008)
Zn- or Cu-containing CaP-based coatings formed by micro-arc oxidation on titanium and Ti-40Nb Alloy: Part I-Microstructure, composition and properties
Опубліковано: (2020)
Опубліковано: (2020)
Comparative study of the structure, properties, and corrosion behavior of Sr-containing biocoatings on Mg0.8Ca
Опубліковано: (2020)
Опубліковано: (2020)
Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: Structure, composition and antibacterial assay
Опубліковано: (2019)
Опубліковано: (2019)
Antibacterial Amorphous–Crystalline Coatings Based on Wollastonite and ZnO Particles
Опубліковано: (2024)
Опубліковано: (2024)
Influence of the substrate bias on the stoichiometry and structure of RF-magnetron sputter-deposited silver-containing calcium phosphate coatings
Опубліковано: (2013)
Опубліковано: (2013)
Effect of the porosity, roughness, wettability, and charge of micro-arc coatings on the efficiency of doxorubicin delivery and suppression of cancer cells
Опубліковано: (2020)
Опубліковано: (2020)
Zn- or Cu-containing CaP-Based Coatings Formed by Micro-Arc Oxidation on Titanium and Ti-40Nb Alloy: Part II-Wettability and Biological Performance
Опубліковано: (2020)
Опубліковано: (2020)
Влияние параметров микродугового оксидирования на шероховатость и смачиваемость кальцийфосфатных покрытий
за авторством: Комарова Е. Г. Екатерина Геннадьевна
Опубліковано: (2014)
за авторством: Комарова Е. Г. Екатерина Геннадьевна
Опубліковано: (2014)
Relationship of the Structure and the Effective Diffusion Properties of Porous Zinc- and Copper-Containing Calcium Phosphate Coatings
Опубліковано: (2018)
Опубліковано: (2018)
Morphofunctional changes of Jurkat T lymphoblasts upon short-term contact with a relief calcium phosphate surface
Опубліковано: (2017)
Опубліковано: (2017)
Influence of the Substrate Material on the Formation and Properties of Micro-Arc Coatings with Particles of β-Tricalcium Phosphate
Опубліковано: (2022)
Опубліковано: (2022)
Biological Effect of the Surface Modification of the Fibrous Poly(L-lactic acid) Scaffolds by Radio Frequency Magnetron Sputtering of Different Calcium-Phosphate Targets
Опубліковано: (2017)
Опубліковано: (2017)
The structure of an rf-magnetron sputter-deposited silicate-containinghydroxyapatite-based coating investigated by high-resolution techniques
Опубліковано: (2013)
Опубліковано: (2013)
Behavioral Changes of Multipotent Mesenchymal Stromal Cells in Contact with Synthetic Calcium Phosphates in vitro
Опубліковано: (2018)
Опубліковано: (2018)
Novel multicomponent organic–inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering
Опубліковано: (2019)
Опубліковано: (2019)
Design of Wear-Resistant UHMWPE-Based Composites Loaded with Wollastonite Microfibers Treated with Various Silane Coupling Agents
Опубліковано: (2020)
Опубліковано: (2020)
Additively manufactured porous titanium 3D-scaffolds with antibacterial Zn-, Ag- calcium phosphate biocoatings
Опубліковано: (2022)
Опубліковано: (2022)
Integration of Graphene into Calcium Phosphate Coating for Implant Electronics
Опубліковано: (2025)
Опубліковано: (2025)
Surface Investigation of Physella Acuta Snail Shell Particle Reinforced Aluminium Matrix Composites
Опубліковано: (2022)
Опубліковано: (2022)
Tailoring the Surface Morphology and the Crystallinity State of Cu- and Zn-Substituted Hydroxyapatites on Ti and Mg-Based Alloys
Опубліковано: (2020)
Опубліковано: (2020)
Basic Physics for Growing a Calcium Phosphate Coating on a Titanium Substrate: Theory and Experiment
Опубліковано: (2019)
Опубліковано: (2019)
Application of atomic force microscopy methods for testing the surface parameters of coatings of medical implants
Опубліковано: (2011)
Опубліковано: (2011)
Влияние наночастиц бемита на структурные, коррозионные и диффузионные свойства микродуговых биопокрытий
Опубліковано: (2020)
Опубліковано: (2020)
The formation of calcium phosphate coatings by pulse laser deposition on the surface of polymeric ferroelectric
Опубліковано: (2015)
Опубліковано: (2015)
Corrosion Resistance and Cytocompatibility of Magnesium-Calcium Alloys Modified with Zinc- or Gallium-Doped Calcium Phosphate Coatings
Опубліковано: (2022)
Опубліковано: (2022)
Схожі ресурси
-
Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance
Опубліковано: (2021) -
The Role of Microparticles of β-TCP and Wollastonite in the Creation of Biocoatings on Mg0.8Ca Alloy
Опубліковано: (2023) -
Formation and Properties of Micro-arc Wollastonite-Calcium Phosphate Coatings on Titanium and Zirconium-Niobium Alloy
Опубліковано: (2016) -
Effect of ultrasonic power applied to micro-arc oxidation on the morphology, chemistry, wettability and electrical properties of calcium phosphate coatings on titanium
Опубліковано: (2025) -
Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating
Опубліковано: (2019)