Spatial interpolation of meteorological fields using a multilevel parametric dynamic stochastic low-order model
| Parent link: | Journal of Atmospheric and Solar-Terrestrial Physics Vol. 181, Pt. A.— 2018.— [P. 38-43] |
|---|---|
| Kurumsal yazarlar: | , |
| Diğer Yazarlar: | , , , , , |
| Özet: | Title screen The paper focuses on a new method of spatial interpolation of air temperature and wind velocity fields in the troposphere. The method is based on Kalman filtering and a multilevel parametric dynamic stochastic low-order model. The key feature of the proposed model is that it has parameters, which are responsible for the altitude levels. Generally, models use so-called “shallow water” (shallow water approximation), and altitude correlation is not taken into account, or they may rely only on mandatory isobaric levels data, thus ignoring the data obtained for significant levels. Standard levels are located at considerable distances in altitude from each other and the altitude correlation there is not usually significant. By using parameters that are responsible for the altitude levels, this model allows us to estimate the effect that information coming from neighbouring altitude levels may have on the final estimate. The paper presents the results of a statistical estimation of the proposed spatial interpolation algorithm. A comparison of the results statistical estimation spatial interpolation of the proposed algorithm with a four-dimensional dynamic-stochastic model is given. Режим доступа: по договору с организацией-держателем ресурса |
| Dil: | İngilizce |
| Baskı/Yayın Bilgisi: |
2018
|
| Konular: | |
| Online Erişim: | https://doi.org/10.1016/j.jastp.2018.10.009 |
| Materyal Türü: | Elektronik Kitap Bölümü |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659529 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 659529 | ||
| 005 | 20250321164630.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\28134 | ||
| 035 | |a RU\TPU\network\15846 | ||
| 090 | |a 659529 | ||
| 100 | |a 20190226d2018 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Spatial interpolation of meteorological fields using a multilevel parametric dynamic stochastic low-order model |f A. V. Lavrinenko [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 330 | |a The paper focuses on a new method of spatial interpolation of air temperature and wind velocity fields in the troposphere. The method is based on Kalman filtering and a multilevel parametric dynamic stochastic low-order model. The key feature of the proposed model is that it has parameters, which are responsible for the altitude levels. Generally, models use so-called “shallow water” (shallow water approximation), and altitude correlation is not taken into account, or they may rely only on mandatory isobaric levels data, thus ignoring the data obtained for significant levels. Standard levels are located at considerable distances in altitude from each other and the altitude correlation there is not usually significant. By using parameters that are responsible for the altitude levels, this model allows us to estimate the effect that information coming from neighbouring altitude levels may have on the final estimate. The paper presents the results of a statistical estimation of the proposed spatial interpolation algorithm. A comparison of the results statistical estimation spatial interpolation of the proposed algorithm with a four-dimensional dynamic-stochastic model is given. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Journal of Atmospheric and Solar-Terrestrial Physics | ||
| 463 | |t Vol. 181, Pt. A |v [P. 38-43] |d 2018 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a Kalman filter | |
| 610 | 1 | |a spatial interpolation | |
| 610 | 1 | |a data assimilation | |
| 610 | 1 | |a numerical modelling | |
| 610 | 1 | |a low-order parametric dynamic stochastic model | |
| 610 | 1 | |a фильтр Калмана | |
| 610 | 1 | |a интерполяция | |
| 610 | 1 | |a ассимиляция | |
| 610 | 1 | |a численное моделирование | |
| 610 | 1 | |a параметрические модели | |
| 610 | 1 | |a стохастические модели | |
| 701 | 1 | |a Lavrinenko |b A. V. |g Andrey Viktorovich | |
| 701 | 1 | |a Moldovanova |b E. A. |c mathematician |c Senior Lecturer of Tomsk Polytechnic University |f 1968- |g Evgeniya Aleksandrovna |3 (RuTPU)RU\TPU\pers\33417 |9 17111 | |
| 701 | 1 | |a Mymrina |b D. F. |c linguist |c Associate Professor of Tomsk Polytechnic University, candidate of philological sciences |f 1979- |g Dina Fedorovna |3 (RuTPU)RU\TPU\pers\34816 | |
| 701 | 1 | |a Popova |b A. I. |g Avgustina Ivanovna | |
| 701 | 1 | |a Popova |b K. Yu. |g Kseniya Yurjevna | |
| 701 | 1 | |a Popov |b Yu. B. |g Yury Borisovich | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Школа базовой инженерной подготовки |b Отделение математики и информатики |3 (RuTPU)RU\TPU\col\23555 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт неразрушающего контроля (ИНК) |b Кафедра точного приборостроения (ТПС) |b Учебно-научный центр ТПУ на базе Института оптики атмосферы СО РАН (УНЦ ТПУ СО РАН) |3 (RuTPU)RU\TPU\col\21258 |
| 801 | 2 | |a RU |b 63413507 |c 20190226 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.jastp.2018.10.009 | |
| 942 | |c CF | ||