Influence of energy dissipation at the interphase boundaries on impact fracture behaviour of a plain carbon steel

Bibliografiske detaljer
Parent link:Theoretical and Applied Fracture Mechanics
Vol. 97.— 2018.— [P. 478-499]
Institution som forfatter: Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения
Andre forfattere: Panin S. V. Sergey Viktorovich, Moiseenko D. D. Dmitry Davidovich, Maksimov P. V. Pavel Vasiljevich, Vlasov I. V. Ilya Viktorovich, Byakov A. V. Anton Viktorovich, Marushchak P. O. Pavel Orestovich, Berto F. Filippo, Schmauder S. Siegfried, Vinogradov A. Yu. Aleksey Yurjevich
Summary:Title screen
The paper deals with the impact deformation and fracture behaviour of commercial plain carbon pipe steel 17Mn1Si. The explicit account of the internal grain structure, temperature and geometry of the notch have been made in theoretical physical mesomechanics formulation aiming at in depth understanding of the role of strain energy factors in dynamic fracture. Theoretical method of excitable cellular automata and laboratory impact bending tests followed by fractographic analysis were paired with time–frequency analysis of acoustic emission accompanying local deformation and fracture processes. It was shown that formulation of the crack opening criterion under dynamic loading conditions should explicitly account for rotation energy accumulation and incorporate the microscopic temporal and spatial details of defect generation from internal (grain) boundaries. A fairly good agreement has been found between the strain energy characteristics obtained from mechanical loading data and independently measured acoustic emission signal being distinguished in terms of consumed and released energy. The impact toughness almost linearly decreased with temperature, which was consistent with fractographic observations. At the stage of crack initiation, when the energy dissipation processes at the internal structure elements significantly affect the initiation of dynamic fracture, the acoustic emission energy reduced in proportion to the expended mechanical energy, which considerably decreased with temperature. The vital role of the energy release at interface/grain boundaries and its decreased significance with decreasing temperature was demonstrated both in numeric simulations and in dynamic experiments.
Режим доступа: по договору с организацией-держателем ресурса
Sprog:engelsk
Udgivet: 2018
Fag:
Online adgang:https://doi.org/10.1016/j.tafmec.2017.09.010
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659506

MARC

LEADER 00000naa0a2200000 4500
001 659506
005 20250321163036.0
035 |a (RuTPU)RU\TPU\network\28087 
035 |a RU\TPU\network\19459 
090 |a 659506 
100 |a 20190222d2018 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Influence of energy dissipation at the interphase boundaries on impact fracture behaviour of a plain carbon steel  |f S. V. Panin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 64 tit.] 
330 |a The paper deals with the impact deformation and fracture behaviour of commercial plain carbon pipe steel 17Mn1Si. The explicit account of the internal grain structure, temperature and geometry of the notch have been made in theoretical physical mesomechanics formulation aiming at in depth understanding of the role of strain energy factors in dynamic fracture. Theoretical method of excitable cellular automata and laboratory impact bending tests followed by fractographic analysis were paired with time–frequency analysis of acoustic emission accompanying local deformation and fracture processes. It was shown that formulation of the crack opening criterion under dynamic loading conditions should explicitly account for rotation energy accumulation and incorporate the microscopic temporal and spatial details of defect generation from internal (grain) boundaries. A fairly good agreement has been found between the strain energy characteristics obtained from mechanical loading data and independently measured acoustic emission signal being distinguished in terms of consumed and released energy. The impact toughness almost linearly decreased with temperature, which was consistent with fractographic observations. At the stage of crack initiation, when the energy dissipation processes at the internal structure elements significantly affect the initiation of dynamic fracture, the acoustic emission energy reduced in proportion to the expended mechanical energy, which considerably decreased with temperature. The vital role of the energy release at interface/grain boundaries and its decreased significance with decreasing temperature was demonstrated both in numeric simulations and in dynamic experiments. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Theoretical and Applied Fracture Mechanics 
463 |t Vol. 97  |v [P. 478-499]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a рассеяние 
610 1 |a межфазные границы 
610 1 |a ударное разрушение 
610 1 |a углеродистая сталь 
701 1 |a Panin  |b S. V.  |c specialist in the field of material science  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1971-  |g Sergey Viktorovich  |3 (RuTPU)RU\TPU\pers\32910  |9 16758 
701 1 |a Moiseenko  |b D. D.  |g Dmitry Davidovich 
701 1 |a Maksimov  |b P. V.  |g Pavel Vasiljevich 
701 1 |a Vlasov  |b I. V.  |c specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 1988-  |g Ilya Viktorovich  |3 (RuTPU)RU\TPU\pers\33560 
701 1 |a Byakov  |b A. V.  |c specialist in the field of material science  |c engineer of Tomsk polytechnical university, Candidate of Technical Sciences  |f 1985-  |g Anton Viktorovich  |3 (RuTPU)RU\TPU\pers\35461 
701 1 |a Marushchak  |b P. O.  |g Pavel Orestovich 
701 1 |a Berto  |b F.  |g Filippo 
701 1 |a Schmauder  |b S.  |g Siegfried 
701 1 |a Vinogradov  |b A. Yu.  |g Aleksey Yurjevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа новых производственных технологий  |b Отделение материаловедения  |3 (RuTPU)RU\TPU\col\23508 
801 2 |a RU  |b 63413507  |c 20190222  |g RCR 
856 4 |u https://doi.org/10.1016/j.tafmec.2017.09.010 
942 |c CF