Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules

Bibliografiske detaljer
Parent link:ACS Applied Materials & Interfaces
Vol. 41, iss. 10.— 2018.— [P. 34849-34868]
Institution som forfatter: Национальный исследовательский Томский политехнический университет (ТПУ) Институт неразрушающего контроля (ИНК) Международная научно-образовательная лаборатория неразрушающего контроля (МНОЛ НК)
Andre forfattere: Timin A. S. Aleksandr Sergeevich, Muslimov A. R. Albert Radikovich, Zyuzin M. V. Mikhail, Peltek A. O. Aleksey Olekseevich, Karpov T. E. Timofey Evgenjevich, Sergeev I. S. Igor Sergeevich, Doshchenko A. I. Anna Igorevna, Goncharenko A. A., Yuylshin N. S. Nikita Sergeevich, Sinelnik A. Artem, Krauze B. Barbel, Baumbach T. Tilo, Surmeneva M. A. Maria Alexandrovna, Chernozem R. V. Roman Viktorovich, Sukhorukov G. B.
Summary:Title screen
The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ?-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold’s fabrication. Additionally, the immobilization of the capsules in dynamic mechanical conditions at a frequency of 10 Hz resulted in an increase in the number of the capsules on the fibers with increase in the scaffold piezoelectric response in the order PCL < PHB < PHB-PANi, depending on the chemical composition of the capsules. The immobilization of microcapsules loaded with different bioactive molecules onto the scaffold surface enabled multimodal triggering by physical (ultrasound, laser radiation) and biological (enzymatic treatment) stimuli, providing controllable release of the cargo from scaffolds. Importantly, the microcapsules immobilized onto the surface of the scaffolds did not influence the cell growth, viability, and cell proliferation on the scaffolds. Moreover, the attachment of human mesenchymal stem cells (hMSCs) on the scaffolds revealed that the PHB and PHB-PANi scaffolds promoted adhesion of hMSCs compared to that of the PCL scaffolds.
Two bioactive compounds, antibiotic ceftriaxone sodium (CS) and osteogenic factor dexamethasone (DEXA), were chosen to load the microcapsules and demonstrate the antimicrobial properties and osteogenesis of the scaffolds. The modified scaffolds had prolonged release of CS or DEXA, which provided an improved antimicrobial effect, as well as enhanced osteogenic differentiation and mineralization of the scaffolds modified with capsules compared to that of individual scaffolds soaked in CS solution or incubated in an osteogenic medium. Thus, the immobilization of microcapsules provides a simple, convenient way to incorporate bioactive compounds onto polymer scaffolds, which makes these multimodal materials suitable for personalized drug therapy and bone tissue engineering.
Режим доступа: по договору с организацией-держателем ресурса
Sprog:engelsk
Udgivet: 2018
Fag:
Online adgang:https://doi.org/10.1021/acsami.8b09810
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659494

MARC

LEADER 00000naa0a2200000 4500
001 659494
005 20250826102457.0
035 |a (RuTPU)RU\TPU\network\28075 
090 |a 659494 
100 |a 20190222d2018 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules  |f A. S. Timin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a The incorporation of bioactive compounds onto polymer fibrous scaffolds with further control of drug release kinetics is essential to improve the functionality of scaffolds for personalized drug therapy and regenerative medicine. In this study, polymer and hybrid microcapsules were prepared and used as drug carriers, which are further deposited onto polymer microfiber scaffolds [polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and PHB doping with the conductive polyaniline (PANi) of 2 wt % (PHB-PANi)]. The number of immobilized microcapsules decreased with increase in their ?-potential due to electrostatic repulsion with the negatively charged fiber surface, depending on the polymer used for the scaffold’s fabrication. Additionally, the immobilization of the capsules in dynamic mechanical conditions at a frequency of 10 Hz resulted in an increase in the number of the capsules on the fibers with increase in the scaffold piezoelectric response in the order PCL < PHB < PHB-PANi, depending on the chemical composition of the capsules. The immobilization of microcapsules loaded with different bioactive molecules onto the scaffold surface enabled multimodal triggering by physical (ultrasound, laser radiation) and biological (enzymatic treatment) stimuli, providing controllable release of the cargo from scaffolds. Importantly, the microcapsules immobilized onto the surface of the scaffolds did not influence the cell growth, viability, and cell proliferation on the scaffolds. Moreover, the attachment of human mesenchymal stem cells (hMSCs) on the scaffolds revealed that the PHB and PHB-PANi scaffolds promoted adhesion of hMSCs compared to that of the PCL scaffolds. 
330 |a Two bioactive compounds, antibiotic ceftriaxone sodium (CS) and osteogenic factor dexamethasone (DEXA), were chosen to load the microcapsules and demonstrate the antimicrobial properties and osteogenesis of the scaffolds. The modified scaffolds had prolonged release of CS or DEXA, which provided an improved antimicrobial effect, as well as enhanced osteogenic differentiation and mineralization of the scaffolds modified with capsules compared to that of individual scaffolds soaked in CS solution or incubated in an osteogenic medium. Thus, the immobilization of microcapsules provides a simple, convenient way to incorporate bioactive compounds onto polymer scaffolds, which makes these multimodal materials suitable for personalized drug therapy and bone tissue engineering. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t ACS Applied Materials & Interfaces 
463 |t Vol. 41, iss. 10  |v [P. 34849-34868]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a antibacterial properties 
610 1 |a cell adhesion 
610 1 |a osteogenic differentiation 
610 1 |a polyelectrolyte and hybrid microcapsules 
610 1 |a polymer scaffolds 
610 1 |a sol-gel coating 
610 1 |a антибактериальные свойства 
610 1 |a клеточная адгезия 
610 1 |a дифференциация 
610 1 |a микрокапсулы 
610 1 |a полимерные строительные материалы 
610 1 |a золь-гель технологии 
701 1 |a Timin  |b A. S.  |c Chemist  |c Associate Scientist of Tomsk Polytechnic University  |f 1989-  |g Aleksandr Sergeevich  |3 (RuTPU)RU\TPU\pers\37036 
701 1 |a Muslimov  |b A. R.  |g Albert Radikovich 
701 1 |a Zyuzin  |b M. V.  |g Mikhail 
701 1 |a Peltek  |b A. O.  |g Aleksey Olekseevich 
701 1 |a Karpov  |b T. E.  |g Timofey Evgenjevich 
701 1 |a Sergeev  |b I. S.  |g Igor Sergeevich 
701 1 |a Doshchenko  |b A. I.  |g Anna Igorevna 
701 1 |a Goncharenko  |b A. A. 
701 1 |a Yuylshin  |b N. S.  |g Nikita Sergeevich 
701 1 |a Sinelnik  |b A.  |g Artem 
701 1 |a Krauze  |b B.  |g Barbel 
701 1 |a Baumbach  |b T.  |g Tilo 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Sukhorukov  |b G. B. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт неразрушающего контроля (ИНК)  |b Международная научно-образовательная лаборатория неразрушающего контроля (МНОЛ НК)  |3 (RuTPU)RU\TPU\col\19961 
801 2 |a RU  |b 63413507  |c 20210419  |g RCR 
856 4 |u https://doi.org/10.1021/acsami.8b09810 
942 |c CF