Catheter detection and segmentation in volumetric ultrasound using SVM and GLCM

Dettagli Bibliografici
Parent link:Научная визуализация: электронный журнал.— , 2009-
Т. 10, № 4.— 2018.— [С. 30-39]
Ente Autore: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Altri autori: Danilov V. V. Vyacheslav Vladimirovich, Skirnevsky I. P. Igor Petrovich, Manakov R. Roman, Kolpashchikov D. Yu. Dmitry Yurjevich, Gerget O. M. Olga Mikhailovna, Malgani F.
Riassunto:Заглавие с экрана
The focus of this study was to develop an image-based algorithm for the catheter detection and segmentation in volumetric ultrasound. Nowadays, echocardiography is one of the most common methods of cardiovascular diseases diagnostic and surgery. As an input data the algorithm uses epicardial full-volume 3D echocardiography datasets. In total, 9 datasets consisted of 15 three-dimensional timeframes were processed. Each 3D timeframe includes 208 slices with the size of 176*176. To correctly detect the catheter, the feature-based approach was applied to recognition the catheter within the 3D echocardiography datasets. MATLAB was used for all calculations as the main numerical computing environment. Before the main part of the algorithm, we performed pre-processing of the data. The pre-processing workflow comprises imposing a restriction on the area of the region for noise reduction, automatic Otsu’s thresholding and morphological operations. The proposed algorithm based on gray-level co-occurrence matrix (GLCM) was applied as a feature extraction technique. Once the GLCM was computed, we obtained correlation, contrast, homogeneity and energy features. Then we applied feature thresholds to the catheter detection. These thresholds were obtained using Support Vector Machine (SVM) with the linear kernel function and standardization the predictor data. The average segmentation and recognition accuracies of the algorithm equal 94.16% and 87.2% respectively. The processing time for one 2D slice and one 3D dataset are equal to 9±0.2 milliseconds and 1.96±0.045 seconds, respectively. Though the algorithm is not time-consuming for 2D mode, it is still complicated to apply it to 3D real-time visualization.
Lingua:inglese
Pubblicazione: 2018
Soggetti:
Accesso online:http://dx.doi.org/10.26583/sv.10.4.03
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659378

MARC

LEADER 00000naa0a2200000 4500
001 659378
005 20251127124229.0
035 |a (RuTPU)RU\TPU\network\27934 
090 |a 659378 
100 |a 20190215d2018 k||y0rusy50 ca 
101 0 |a eng 
102 |a RU 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Catheter detection and segmentation in volumetric ultrasound using SVM and GLCM  |f V. V. Danilov [et al.] 
203 |a Text  |c electronic 
300 |a Заглавие с экрана 
330 |a The focus of this study was to develop an image-based algorithm for the catheter detection and segmentation in volumetric ultrasound. Nowadays, echocardiography is one of the most common methods of cardiovascular diseases diagnostic and surgery. As an input data the algorithm uses epicardial full-volume 3D echocardiography datasets. In total, 9 datasets consisted of 15 three-dimensional timeframes were processed. Each 3D timeframe includes 208 slices with the size of 176*176. To correctly detect the catheter, the feature-based approach was applied to recognition the catheter within the 3D echocardiography datasets. MATLAB was used for all calculations as the main numerical computing environment. Before the main part of the algorithm, we performed pre-processing of the data. The pre-processing workflow comprises imposing a restriction on the area of the region for noise reduction, automatic Otsu’s thresholding and morphological operations. The proposed algorithm based on gray-level co-occurrence matrix (GLCM) was applied as a feature extraction technique. Once the GLCM was computed, we obtained correlation, contrast, homogeneity and energy features. Then we applied feature thresholds to the catheter detection. These thresholds were obtained using Support Vector Machine (SVM) with the linear kernel function and standardization the predictor data. The average segmentation and recognition accuracies of the algorithm equal 94.16% and 87.2% respectively. The processing time for one 2D slice and one 3D dataset are equal to 9±0.2 milliseconds and 1.96±0.045 seconds, respectively. Though the algorithm is not time-consuming for 2D mode, it is still complicated to apply it to 3D real-time visualization. 
461 |t Научная визуализация  |o электронный журнал  |d 2009- 
463 |t Т. 10, № 4  |v [С. 30-39]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a catheter detection 
610 1 |a catheter segmentation 
610 1 |a texture analysis 
610 1 |a GLCM 
610 1 |a ultrasound 
701 1 |a Danilov  |b V. V.  |c specialist in the field of informatics and computer technology  |c engineer of Tomsk Polytechnic University  |f 1989-  |g Vyacheslav Vladimirovich  |3 (RuTPU)RU\TPU\pers\37831 
701 1 |a Skirnevsky  |b I. P.  |c specialist in the field of automation and computer systems  |c educational master Tomsk Polytechnic University  |f 1989-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\35105 
701 1 |a Manakov  |b R.  |g Roman 
701 1 |a Kolpashchikov  |b D. Yu.  |c specialist in the field of engineering  |c engineer of Tomsk Polytechnic University  |f 1992-  |g Dmitry Yurjevich  |3 (RuTPU)RU\TPU\pers\41099 
701 1 |a Gerget  |b O. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University, Doctor of Sciences  |f 1974-  |g Olga Mikhailovna  |3 (RuTPU)RU\TPU\pers\31430  |9 15593 
701 1 |a Malgani  |b F. 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
801 2 |a RU  |b 63413507  |c 20190424  |g RCR 
856 4 |u http://dx.doi.org/10.26583/sv.10.4.03 
942 |c CF