Zirconia ceramics processing by intense electron and ion beams
| Parent link: | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.— , 1998- Vol. 435, 15 November 2018 : International Conference on Radiation Effects in Insulators, July 2-7, 2017 in Versailles, France.— 2018.— [Р. 190-193] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Summary: | Title screen Beam technologies are considered promising for surface modification of ceramics. The processes related to modification of zirconia and alumina-zirconium ceramics properties under intense electron and ion beam action are investigated. The ceramics samples were sintered by the thermal method and processed by electron and ion beams in vacuum. The electron beams had the following parameters: E = 15 keV, current density per pulse, 18 A/cm2, pulse duration, 50 μs, and pulse repetition rate, 0.1 Hz. For ion irradiation, we used C+ ion beams with the following parameters: energy of accelerated ions, 200 keV; current pulse duration, 100 ns; and pulse current densities, 40 and 150 A/cm2. It is shown that radiation processing causes significant changes in the microstructure, phase composition and electrical conductivity of the near-surface layer. It is established that the mechanical properties of irradiated modified ceramic layers depend mainly on the source porosity of the samples before processing. In particular, radiation exposure of low porous ceramics decreases the hardness of the near-surface layers. On the contrary, radiation-exposed highly porous ceramics exhibits increased hardness, which is caused by a local increase in the density of the near-surface layers as a result of fusion. Режим доступа: по договору с организацией-держателем ресурса |
| Language: | English |
| Published: |
2018
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.nimb.2018.02.007 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659274 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 659274 | ||
| 005 | 20250317163546.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\27746 | ||
| 090 | |a 659274 | ||
| 100 | |a 20190128d2018 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Zirconia ceramics processing by intense electron and ion beams |f S. A. Gyngazov (Ghyngazov) | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 15 tit.] | ||
| 330 | |a Beam technologies are considered promising for surface modification of ceramics. The processes related to modification of zirconia and alumina-zirconium ceramics properties under intense electron and ion beam action are investigated. The ceramics samples were sintered by the thermal method and processed by electron and ion beams in vacuum. The electron beams had the following parameters: E = 15 keV, current density per pulse, 18 A/cm2, pulse duration, 50 μs, and pulse repetition rate, 0.1 Hz. For ion irradiation, we used C+ ion beams with the following parameters: energy of accelerated ions, 200 keV; current pulse duration, 100 ns; and pulse current densities, 40 and 150 A/cm2. It is shown that radiation processing causes significant changes in the microstructure, phase composition and electrical conductivity of the near-surface layer. It is established that the mechanical properties of irradiated modified ceramic layers depend mainly on the source porosity of the samples before processing. In particular, radiation exposure of low porous ceramics decreases the hardness of the near-surface layers. On the contrary, radiation-exposed highly porous ceramics exhibits increased hardness, which is caused by a local increase in the density of the near-surface layers as a result of fusion. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms |d 1998- | ||
| 463 | |t Vol. 435, 15 November 2018 : International Conference on Radiation Effects in Insulators, July 2-7, 2017 in Versailles, France |v [Р. 190-193] |d 2018 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a zirconia ceramics | |
| 610 | 1 | |a Alumina-zirconium ceramics | |
| 610 | 1 | |a Electron and ion beams | |
| 610 | 1 | |a Modification | |
| 610 | 1 | |a циркониевая керамика | |
| 610 | 1 | |a электронные пучки | |
| 610 | 1 | |a ионные пучки | |
| 610 | 1 | |a модификации | |
| 700 | 1 | |a Gyngazov (Ghyngazov) |b S. A. |c specialist in the field of electronics |c Professor of Tomsk Polytechnic University, Doctor of technical sciences |f 1958- |g Sergey Anatolievich |3 (RuTPU)RU\TPU\pers\33279 |9 17024 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт неразрушающего контроля (ИНК) |b Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводников (ПНИЛ ЭДиП) |3 (RuTPU)RU\TPU\col\19033 |
| 801 | 2 | |a RU |b 63413507 |c 20190409 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.nimb.2018.02.007 | |
| 942 | |c CF | ||