Computer Simulation of Thermal Cycling of Porous Coatings: Hybrid Excitable Cellular Automata Method
| Parent link: | AIP Conference Proceedings Vol. 2051 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2018 (AMHS’18).— 2018.— [020202, 5 p.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , |
| Summary: | Title screen The multiscale hybrid discrete-continuous approach of excitable cellular automata was applied to account for the porosity and nanocrystalline structure when taking an idealized quasi-elastic thermal barrier coating as an object under simulation. The developed technique includes a set of algorithms for calculating the local moments of forces and angular velocities of micro-rotations occurring in a heterogeneous medium with regard to energy dissipation. It was found that at thermal cycling of polycrystalline system high level microstresses occurs resulting from the thermal expansion anisotropy of grains. The stress level was shown to decrease with increasing fraction of rotational modes. This tendency takes place over the entire depth of the studied specimen and during the entire thermal loading time. The simulation results indicate on the existence of an optimal porosity level when the structure exhibits the highest relaxation capacity. Режим доступа: по договору с организацией-держателем ресурса |
| Language: | English |
| Published: |
2018
|
| Subjects: | |
| Online Access: | https://doi.org/10.1063/1.5083445 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659202 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 659202 | ||
| 005 | 20240111134722.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\27662 | ||
| 035 | |a RU\TPU\network\27661 | ||
| 090 | |a 659202 | ||
| 100 | |a 20190124a2018 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 105 | |a y z 100zy | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Computer Simulation of Thermal Cycling of Porous Coatings: Hybrid Excitable Cellular Automata Method |f D. D. Moiseenko [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 6 tit.] | ||
| 330 | |a The multiscale hybrid discrete-continuous approach of excitable cellular automata was applied to account for the porosity and nanocrystalline structure when taking an idealized quasi-elastic thermal barrier coating as an object under simulation. The developed technique includes a set of algorithms for calculating the local moments of forces and angular velocities of micro-rotations occurring in a heterogeneous medium with regard to energy dissipation. It was found that at thermal cycling of polycrystalline system high level microstresses occurs resulting from the thermal expansion anisotropy of grains. The stress level was shown to decrease with increasing fraction of rotational modes. This tendency takes place over the entire depth of the studied specimen and during the entire thermal loading time. The simulation results indicate on the existence of an optimal porosity level when the structure exhibits the highest relaxation capacity. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | 0 | |0 (RuTPU)RU\TPU\network\4816 |t AIP Conference Proceedings | |
| 463 | 0 | |0 (RuTPU)RU\TPU\network\27575 |t Vol. 2051 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2018 (AMHS’18) |o Proceedings of the International conference, 1–5 October 2018, Tomsk, Russia |f National Research Tomsk Polytechnic University (TPU); eds. V. E. Panin, S. G. Psakhie, V. M. Fomin |v [020202, 5 p.] |d 2018 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a компьютерное моделирование | |
| 610 | 1 | |a пористые покрытия | |
| 610 | 1 | |a клеточные автоматы | |
| 610 | 1 | |a пористость | |
| 610 | 1 | |a термоциклирование | |
| 610 | 1 | |a анизотропия | |
| 610 | 1 | |a нанокристаллические структуры | |
| 701 | 1 | |a Moiseenko |b D. D. | |
| 701 | 1 | |a Panin |b S. V. |c specialist in the field of material science |c Professor of Tomsk Polytechnic University, Doctor of technical sciences |f 1971- |g Sergey Viktorovich |3 (RuTPU)RU\TPU\pers\32910 |9 16758 | |
| 701 | 1 | |a Maksimov |b P. V. | |
| 701 | 1 | |a Panin |b V. E. |c Director of Russian materials science center |c Research advisor of Institute of strength physics and materials science of Siberian branch of Russian Academy of Sciences |f 1930- |g Viktor Evgenyevich |3 (RuTPU)RU\TPU\pers\26443 |9 12146 | |
| 701 | 1 | |a Babich |b D. S. | |
| 701 | 1 | |a Schmauder |b S. | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа новых производственных технологий |b Отделение материаловедения |3 (RuTPU)RU\TPU\col\23508 |
| 801 | 2 | |a RU |b 63413507 |c 20190124 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1063/1.5083445 | |
| 942 | |c CF | ||