Computer-Aided Study of the Mechanical Behavior of the Porous Ceramic Based Composite with Plastic Pore Filler

מידע ביבליוגרפי
Parent link:AIP Conference Proceedings
Vol. 2051 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2018 (AMHS’18).— 2018.— [020130, 4 p.]
מחבר ראשי: Konovalenko I. S. Igor Sergeevich
מחבר תאגידי: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
מחברים אחרים: Shilko E. V. Evgeny Viktorovich, Sharkeev Yu. P. Yury Petrovich
סיכום:Title screen
A two-scale mechanical model of multiphase materials with the hard skeleton and different content of interstitial soft matter was developed within the framework of the formalism of movable cellular automaton method. In the paper, we numerically studied a particular example of such kind of materials, namely a heterogeneous porous composite with brittle matrix and plastic soft inclusions. The model was applied to study the fracture pattern and mechanical properties of mesoscopic samples with a linear distribution of the local porosity in the depth of the material under uniaxial compression. Simulation results showed the essentially nonlinear dependence of their elastic and strength properties on the degree of pore space filling. Depending on the sign of the gradient of porosity, the value of compression strength of partially filled samples can significantly increase or remain constant with increase in the volume fraction of filled pore space. It is shown that the combination of the parameters of pore structure, including a sign of the porosity gradient and the fraction of filled pore space, determines the shape of the main cracks and their localization.
Режим доступа: по договору с организацией-держателем ресурса
יצא לאור: 2018
נושאים:
גישה מקוונת:https://doi.org/10.1063/1.5083373
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659181
תיאור
סיכום:Title screen
A two-scale mechanical model of multiphase materials with the hard skeleton and different content of interstitial soft matter was developed within the framework of the formalism of movable cellular automaton method. In the paper, we numerically studied a particular example of such kind of materials, namely a heterogeneous porous composite with brittle matrix and plastic soft inclusions. The model was applied to study the fracture pattern and mechanical properties of mesoscopic samples with a linear distribution of the local porosity in the depth of the material under uniaxial compression. Simulation results showed the essentially nonlinear dependence of their elastic and strength properties on the degree of pore space filling. Depending on the sign of the gradient of porosity, the value of compression strength of partially filled samples can significantly increase or remain constant with increase in the volume fraction of filled pore space. It is shown that the combination of the parameters of pore structure, including a sign of the porosity gradient and the fraction of filled pore space, determines the shape of the main cracks and their localization.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1063/1.5083373