The Model of Dynamic Inelastic Behavior of Brittle Solids Based on the Concept of Finite Fracture Time
| Источник: | AIP Conference Proceedings Vol. 2051 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2018 (AMHS’18).— 2018.— [020102, 4 p.] |
|---|---|
| Автор-организация: | |
| Другие авторы: | , , , |
| Примечания: | Title screen The paper presents the development of recently proposed kinetic model of dynamic mechanical behavior of brittle solids. The model uses the ideas of kinetic theory of strength to describe the inelastic deformation and fracture. The main feature of the modified dynamic model is the introduction of two relaxation times, which determine the patterns of inelastic deformation under dynamic loading, including the dependences of the values of the cohesion and strain hardening coefficient on the strain rate. These relaxation times have the meaning of a generation time of damage of the smallest ranks and a characteristic time of formation of a system of local damage and cracks of the greatest rank. The advantage of a developed dynamic model is the possibility of its implementation within different conventional models of inelasticity of brittle solids. In the paper we implemented the kinetic model within the classical "quasi-static" Nikolaevsky's plasticity model (non-associated plastic flow rule with the plasticity criterion in the form of Mises- Schleicher). We verified the model and determined its parameters by the example of high-strength concrete. The developed dynamic model can be implemented within the framework of various Lagrangian numerical methods (including finite and discrete element methods) using an explicit integration scheme. Режим доступа: по договору с организацией-держателем ресурса |
| Язык: | английский |
| Опубликовано: |
2018
|
| Предметы: | |
| Online-ссылка: | https://doi.org/10.1063/1.5083345 |
| Формат: | Электронный ресурс Статья |
| Запись в KOHA: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659175 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 659175 | ||
| 005 | 20231101135048.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\27635 | ||
| 035 | |a RU\TPU\network\27634 | ||
| 090 | |a 659175 | ||
| 100 | |a 20190124a2018 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 105 | |a y z 100zy | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a The Model of Dynamic Inelastic Behavior of Brittle Solids Based on the Concept of Finite Fracture Time |f A. S. Grigoriev [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 14 tit.] | ||
| 330 | |a The paper presents the development of recently proposed kinetic model of dynamic mechanical behavior of brittle solids. The model uses the ideas of kinetic theory of strength to describe the inelastic deformation and fracture. The main feature of the modified dynamic model is the introduction of two relaxation times, which determine the patterns of inelastic deformation under dynamic loading, including the dependences of the values of the cohesion and strain hardening coefficient on the strain rate. These relaxation times have the meaning of a generation time of damage of the smallest ranks and a characteristic time of formation of a system of local damage and cracks of the greatest rank. The advantage of a developed dynamic model is the possibility of its implementation within different conventional models of inelasticity of brittle solids. In the paper we implemented the kinetic model within the classical "quasi-static" Nikolaevsky's plasticity model (non-associated plastic flow rule with the plasticity criterion in the form of Mises- Schleicher). We verified the model and determined its parameters by the example of high-strength concrete. The developed dynamic model can be implemented within the framework of various Lagrangian numerical methods (including finite and discrete element methods) using an explicit integration scheme. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | 0 | |0 (RuTPU)RU\TPU\network\4816 |t AIP Conference Proceedings | |
| 463 | 0 | |0 (RuTPU)RU\TPU\network\27575 |t Vol. 2051 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2018 (AMHS’18) |o Proceedings of the International conference, 1–5 October 2018, Tomsk, Russia |f National Research Tomsk Polytechnic University (TPU); eds. V. E. Panin, S. G. Psakhie, V. M. Fomin |v [020102, 4 p.] |d 2018 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a динамическое поведение | |
| 610 | 1 | |a неупругое поведение | |
| 610 | 1 | |a твердые тела | |
| 610 | 1 | |a разрушения | |
| 610 | 1 | |a механическое поведение | |
| 610 | 1 | |a хрупкие тела | |
| 610 | 1 | |a неупругие деформации | |
| 610 | 1 | |a релаксация | |
| 701 | 1 | |a Grigoriev |b A. S. |g Aleksandr | |
| 701 | 1 | |a Shilko |b E. V. |g Evgeny | |
| 701 | 1 | |a Skripnyak |b V. A. |g Vladimir | |
| 701 | 1 | |a Psakhie |b S. G. |c physicist |c head of laboratory, Advisor to the rector, head of Department, Tomsk Polytechnic University, doctor of physico-mathematical Sciences |f 1952-2018 |g Sergey Grigorievich |2 stltpush |3 (RuTPU)RU\TPU\pers\33038 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |c (2009- ) |2 stltpush |3 (RuTPU)RU\TPU\col\15902 |
| 801 | 2 | |a RU |b 63413507 |c 20190124 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1063/1.5083345 | |
| 942 | |c CF | ||