Structural Scale Levels of Plastic Deformation and Fracture of High-Strength Titanium Alloy Welds

Dades bibliogràfiques
Parent link:Physical Mesomechanics.— , 1998-
Vol. 21, iss. 5.— 2018.— [P. 464-474]
Autor corporatiu: Национальный исследовательский Томский политехнический университет (ТПУ) Инженерная школа новых производственных технологий (ИШНПТ) Отделение материаловедения (ОМ)
Altres autors: Panin V. E. Viktor Evgenyevich, Panin S. V. Sergey Viktorovich, Pochivalov Y. I. Yury Ivanovich, Smirnova A. S. Anastasiya Sergeevna, Eremin A. V. Aleksandr Vyacheslavovich
Sumari:Title screen
Structural scale levels of plastic deformation and fracture of welded joints have been studied for two high-strength titanium alloys with a low (VT18U alloy) and a high (VT23 alloy) content of the bcc ? phase. Ultrasonic forging and its combination with high-current pulsed electron beam treatment were used to activate nanoscale structural levels of deformation and fracture in welds in order to increase the fatigue life of welded structures. Ultrasonic forging provides an effective dispersion and nanostructuring of surface layers in the VT18U welded joints with a 4.6-fold increase in their fatigue life. The dispersion and nanostructuring of the VT23 laser welded joints is achieved only by ultrasonic forging combined with high-current electric pulse treatment, in which longitudinal dispersion of ? bands occurs with the formation of orthorhombic a " nanolaths. In so doing, the fatigue life of the VT23 welds increases twice, but the effect depends on the power of the high-current generator and electrical pulse parameters. The fracture micrographs of the treated VT23 welded joints reveal nanofibrous bands responsible for ductile fracture and for the reduction of the fatigue crack growth rate. The structural changes and the increase in the fatigue life of the studied titanium alloy welds are associated with the activation of nanoscale structural levels of deformation and fracture induced by ultrasonic forging or by its combination with high-current pulsed electron beam treatment.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2018
Matèries:
Accés en línia:https://doi.org/10.1134/S1029959918050107
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659119

MARC

LEADER 00000naa0a2200000 4500
001 659119
005 20250306160223.0
035 |a (RuTPU)RU\TPU\network\27554 
090 |a 659119 
100 |a 20190121d2018 k||y0rusy50 ba 
101 1 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Structural Scale Levels of Plastic Deformation and Fracture of High-Strength Titanium Alloy Welds  |f V. E. Panin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 23 tit.] 
330 |a Structural scale levels of plastic deformation and fracture of welded joints have been studied for two high-strength titanium alloys with a low (VT18U alloy) and a high (VT23 alloy) content of the bcc ? phase. Ultrasonic forging and its combination with high-current pulsed electron beam treatment were used to activate nanoscale structural levels of deformation and fracture in welds in order to increase the fatigue life of welded structures. Ultrasonic forging provides an effective dispersion and nanostructuring of surface layers in the VT18U welded joints with a 4.6-fold increase in their fatigue life. The dispersion and nanostructuring of the VT23 laser welded joints is achieved only by ultrasonic forging combined with high-current electric pulse treatment, in which longitudinal dispersion of ? bands occurs with the formation of orthorhombic a " nanolaths. In so doing, the fatigue life of the VT23 welds increases twice, but the effect depends on the power of the high-current generator and electrical pulse parameters. The fracture micrographs of the treated VT23 welded joints reveal nanofibrous bands responsible for ductile fracture and for the reduction of the fatigue crack growth rate. The structural changes and the increase in the fatigue life of the studied titanium alloy welds are associated with the activation of nanoscale structural levels of deformation and fracture induced by ultrasonic forging or by its combination with high-current pulsed electron beam treatment. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 1 |t Physical Mesomechanics  |d 1998- 
463 1 |t Vol. 21, iss. 5  |v [P. 464-474]  |d 2018 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a титановые сплавы 
610 1 |a сварные соединения 
610 1 |a пластическая деформация 
610 1 |a усталостная прочность 
701 1 |a Panin  |b V. E.  |c Director of Russian materials science center  |c Research advisor of Institute of strength physics and materials science of Siberian branch of Russian Academy of Sciences  |f 1930-  |g Viktor Evgenyevich  |3 (RuTPU)RU\TPU\pers\26443  |9 12146 
701 1 |a Panin  |b S. V.  |c specialist in the field of material science  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1971-  |g Sergey Viktorovich  |3 (RuTPU)RU\TPU\pers\32910  |9 16758 
701 1 |a Pochivalov  |b Y. I.  |g Yury Ivanovich 
701 1 |a Smirnova  |b A. S.  |g Anastasiya Sergeevna 
701 1 |a Eremin  |b A. V.  |g Aleksandr Vyacheslavovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Инженерная школа новых производственных технологий (ИШНПТ)  |b Отделение материаловедения (ОМ)  |3 (RuTPU)RU\TPU\col\23508 
801 2 |a RU  |b 63413507  |c 20190121  |g RCR 
856 4 |u https://doi.org/10.1134/S1029959918050107 
942 |c CF