Renormalization group flows and fixed points for a scalar field in curved space with nonminimal F(ϕ)R coupling

Bibliographic Details
Parent link:Physical Review D: particles, fields, gravitation, and cosmology.— , 1970-
Vol. 96, iss. 12.— 2017.— [125007, 18 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Other Authors: Merzlikin B. S. Boris Sergeevich, Shapiro I. L. Ilya Lvovich, Wipf A. W. Andreas, Zanusso O. Omar
Summary:Title screen
Using covariant methods, we construct and explore the Wetterich equation for a nonminimal coupling F(ϕ)R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This includes the often considered nonminimal coupling ξϕ2R as a special case. We consider the truncations without and with scale- and field-dependent wave-function renormalization in dimensions between four and two. Thereby the main emphasis is on analytic and numerical solutions of the fixed point equations and the behavior in the vicinity of the corresponding fixed points. We determine the nonminimal coupling in the symmetric and spontaneously broken phases with vanishing and nonvanishing average fields, respectively. Using functional perturbative renormalization group methods, we discuss the leading universal contributions to the RG flow below the upper critical dimension d=4.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2017
Subjects:
Online Access:https://doi.org/10.1103/PhysRevD.96.125007
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=659021

MARC

LEADER 00000naa0a2200000 4500
001 659021
005 20251015103655.0
035 |a (RuTPU)RU\TPU\network\27336 
090 |a 659021 
100 |a 20181222d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Renormalization group flows and fixed points for a scalar field in curved space with nonminimal F(ϕ)R coupling  |f B. S. Merzlikin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 52 tit.] 
330 |a Using covariant methods, we construct and explore the Wetterich equation for a nonminimal coupling F(ϕ)R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This includes the often considered nonminimal coupling ξϕ2R as a special case. We consider the truncations without and with scale- and field-dependent wave-function renormalization in dimensions between four and two. Thereby the main emphasis is on analytic and numerical solutions of the fixed point equations and the behavior in the vicinity of the corresponding fixed points. We determine the nonminimal coupling in the symmetric and spontaneously broken phases with vanishing and nonvanishing average fields, respectively. Using functional perturbative renormalization group methods, we discuss the leading universal contributions to the RG flow below the upper critical dimension d=4. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 1 |t Physical Review D  |o particles, fields, gravitation, and cosmology  |d 1970- 
463 1 |t Vol. 96, iss. 12  |v [125007, 18 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Merzlikin  |b B. S.  |c mathematician  |c research engineer, Senior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences  |f 1987-  |g Boris Sergeevich  |3 (RuTPU)RU\TPU\pers\30925  |9 15163 
701 1 |a Shapiro  |b I. L.  |g Ilya Lvovich 
701 1 |a Wipf  |b A. W.  |g Andreas 
701 1 |a Zanusso  |b O.  |g Omar 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
801 2 |a RU  |b 63413507  |c 20181222  |g RCR 
856 4 |u https://doi.org/10.1103/PhysRevD.96.125007 
942 |c CF