3D natural convection melting in a cubical cavity with a heat source

Detalhes bibliográficos
Parent link:International Journal of Thermal Sciences
Vol. 115.— 2017.— [P. 43-53]
Autor principal: Bondareva N. S. Nadezhda Sergeevna
Autor Corporativo: Национальный исследовательский Томский политехнический университет Инженерная школа энергетики Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
Outros Autores: Sheremet M. A. Mikhail Aleksandrovich
Resumo:Title screen
Three-dimensional natural convection melting in a cubical cavity with a local heater has been analyzed numerically. The considered region is an enclosure bounded by two isothermal opposite vertical surfaces of low constant temperature and adiabatic other walls. A heat source of high constant temperature is located on the bottom wall. The governing equations formulated in dimensionless vector potential functions, vorticity vector and temperature with corresponding initial and boundary conditions have been solved using implicit finite difference method of the second-order accuracy. The effects of the Rayleigh number (5?104 ? Ra ? 5?107) and dimensionless time for Prandtl number (Pr = 48.36) and Stefan number (Ste = 5.53) on streamlines, isotherms, profiles of temperature and velocity as well as mean Nusselt number at the heat source surface have been analyzed.
Режим доступа: по договору с организацией-держателем ресурса
Publicado em: 2017
Assuntos:
Acesso em linha:https://doi.org/10.1016/j.ijthermalsci.2017.01.021
Formato: Recurso Electrónico Capítulo de Livro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658937
Descrição
Resumo:Title screen
Three-dimensional natural convection melting in a cubical cavity with a local heater has been analyzed numerically. The considered region is an enclosure bounded by two isothermal opposite vertical surfaces of low constant temperature and adiabatic other walls. A heat source of high constant temperature is located on the bottom wall. The governing equations formulated in dimensionless vector potential functions, vorticity vector and temperature with corresponding initial and boundary conditions have been solved using implicit finite difference method of the second-order accuracy. The effects of the Rayleigh number (5?104 ? Ra ? 5?107) and dimensionless time for Prandtl number (Pr = 48.36) and Stefan number (Ste = 5.53) on streamlines, isotherms, profiles of temperature and velocity as well as mean Nusselt number at the heat source surface have been analyzed.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.ijthermalsci.2017.01.021