The role of convection in gas and liquid phases at droplet evaporation
| Parent link: | International Journal of Thermal Sciences Vol. 134.— 2018.— [P. 421-429] |
|---|---|
| Autor corporatiu: | , |
| Altres autors: | , , , , |
| Sumari: | Title screen The article presents the measuring results of droplet velocity and temperature fields using non-contact optical methods: Particle Image Velocity (PIV), Planar Laser Induced Fluorescence (PLIF) and Thermal imager. The novelty of the work is that the influence of free convection in gas and liquid is investigated experimentally and theoretically and that the key criteria affecting heat and mass transfer are determined. The analysis of experimental data has shown that in the initial period of water drop evaporation, the predominant role in the heat exchange is played by the thermal Marangoni convection. However, for an aqueous salt solution, in spite of the strong influence of the surfactant, the dominant role passes to the solutal Marangoni convection (MaC). In the first seconds after the drop falling, convection and heat transfer in liquid are maximal. Under such conditions it is important to realize an accurate numerical simulation to assess the degree of wall cooling and calculate the non-stationary evaporation. When simulating heat transfer, it is incorrect to neglect free convection in gas or liquid due to their strong nonlinear influence on each other. The heat exchange in the drop is extremely conservative to convection in the liquid (the Peclet number Pe?=?100 and the Nusselt number Nu?=?4). Режим доступа: по договору с организацией-держателем ресурса |
| Idioma: | anglès |
| Publicat: |
2018
|
| Matèries: | |
| Accés en línia: | https://doi.org/10.1016/j.ijthermalsci.2018.08.031 |
| Format: | Electrònic Capítol de llibre |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658926 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 658926 | ||
| 005 | 20250228164125.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\27185 | ||
| 090 | |a 658926 | ||
| 100 | |a 20181217d2018 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a The role of convection in gas and liquid phases at droplet evaporation |f P. A. Strizhak, R. S. Volkov, S. Ya. Misyura [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 62 tit.] | ||
| 330 | |a The article presents the measuring results of droplet velocity and temperature fields using non-contact optical methods: Particle Image Velocity (PIV), Planar Laser Induced Fluorescence (PLIF) and Thermal imager. The novelty of the work is that the influence of free convection in gas and liquid is investigated experimentally and theoretically and that the key criteria affecting heat and mass transfer are determined. The analysis of experimental data has shown that in the initial period of water drop evaporation, the predominant role in the heat exchange is played by the thermal Marangoni convection. However, for an aqueous salt solution, in spite of the strong influence of the surfactant, the dominant role passes to the solutal Marangoni convection (MaC). In the first seconds after the drop falling, convection and heat transfer in liquid are maximal. Under such conditions it is important to realize an accurate numerical simulation to assess the degree of wall cooling and calculate the non-stationary evaporation. When simulating heat transfer, it is incorrect to neglect free convection in gas or liquid due to their strong nonlinear influence on each other. The heat exchange in the drop is extremely conservative to convection in the liquid (the Peclet number Pe?=?100 and the Nusselt number Nu?=?4). | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | 1 | |t International Journal of Thermal Sciences | |
| 463 | 1 | |t Vol. 134 |v [P. 421-429] |d 2018 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a капля | |
| 610 | 1 | |a испарение | |
| 610 | 1 | |a теплопередача | |
| 610 | 1 | |a флуоресценция | |
| 701 | 1 | |a Strizhak |b P. A. |c Specialist in the field of heat power energy |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) |f 1985- |g Pavel Alexandrovich |3 (RuTPU)RU\TPU\pers\30871 |9 15117 | |
| 701 | 1 | |a Volkov |b R. S. |c specialist in the field of power engineering |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences |f 1987- |g Roman Sergeevich |3 (RuTPU)RU\TPU\pers\33926 |9 17499 | |
| 701 | 1 | |a Misyura |b S. Ya. |c specialist in the field of power engineering |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences |f 1964- |g Sergey Yakovlevich |3 (RuTPU)RU\TPU\pers\39641 | |
| 701 | 1 | |a Lezhnin |b S. I. |g Sergey Ivanovich | |
| 701 | 1 | |a Morozov |b V. S. |g Vladimir Sergeevich | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа энергетики |b Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) |3 (RuTPU)RU\TPU\col\23504 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа физики высокоэнергетических процессов |c (2017- ) |3 (RuTPU)RU\TPU\col\23551 |
| 801 | 2 | |a RU |b 63413507 |c 20210201 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.ijthermalsci.2018.08.031 | |
| 942 | |c CF | ||