High Chromium Steel Modification by the Intense Discrete Electron Beam: Structure and Properties

Detaylı Bibliyografya
Parent link:Key Engineering Materials: Scientific Journal
Vol. 781 : Radiation-Thermal Effects and Processes in Inorganic Materials.— 2018.— [P. 64-69]
Müşterek Yazar: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Diğer Yazarlar: Ivanov Yurii Yu., Klopotov V. D. Vladimir Dmitrievich, Klopotov A. A. Anatolii, Petrikova E. A. Elizaveta, Abzaev Yu. Yuriy, Ivanova O. V. Olga, Teresov A. D. Anton
Özet:Title screen
The Fe-Cr-C system thermodynamic analysis has been made. It has been demonstrated that the Fe-Cr alloys carbon alloy addition results in the significant structural-phase state change in them and exerts determinant influence on the M[23]С[6], M[7]С[3], M[3]С[2] and M[3]С carbides existence domain by the [alpha]-and [gamma]-phases. The temperature field numerical calculations, forming in the steel superficial layer in the case of the electron beam irradiation, have been carried out. It has been demonstrated that the peak temperature, being achieved on the sample surface towards the end of the impulse effect, is below steel melting temperature at electrons beam energy density 10 J/cm{2} regardless of the electrons beam pulse duration (50-200 ms). The peak temperature on the irradiation surface is equal to the steel boiling temperature at electrons beam energy density (20-30) J/cm{2} and at pulse duration 50 [mu]s. The peak temperature on the irradiation surface achieves and increases the steel melting temperature at pulse duration 200 [mu]s.
The AISI 321 and AISI 420 steel surface irradiation has been carried out by the intense pulse electron beam. The studies have been made and the nanostructured polyphaser superficial layers formation laws analysis have been done. It has been established that the steel electronic-beam treatment is accompanied by the М[23]С[6] ((Cr, Fe,)[23]C[6]) composition initial carbide phase particles solution, by the carbon and chromium atoms superficial layer crystal lattice saturation, by the submicron sizes and dendritic crystallization cells formation, by the titanium carbide and chromium carbide nanosized particles abstraction. The mechanical and tribological tests of the AISI 321 and AISI 420 steel samples, irradiated by the intense pulse electron beam, have been done. It has been detected that the superficial layer hardness increases in 1.5 times and the superficial layer wear resistance increases in 1.5 times. The friction coefficient decreases in 1.6 times. The microhardness increases in 1.5 times. The wear resistance increases in 3.2 times. The friction coefficient reduces in 2.3 times.
Режим доступа: по договору с организацией-держателем ресурса
Dil:İngilizce
Baskı/Yayın Bilgisi: 2018
Konular:
Online Erişim:https://doi.org/10.4028/www.scientific.net/KEM.781.64
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658792

MARC

LEADER 00000nla2a2200000 4500
001 658792
005 20240214094344.0
035 |a (RuTPU)RU\TPU\network\26861 
035 |a RU\TPU\network\26860 
090 |a 658792 
100 |a 20181121a2018 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a High Chromium Steel Modification by the Intense Discrete Electron Beam: Structure and Properties  |f Yurii Ivanov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a The Fe-Cr-C system thermodynamic analysis has been made. It has been demonstrated that the Fe-Cr alloys carbon alloy addition results in the significant structural-phase state change in them and exerts determinant influence on the M[23]С[6], M[7]С[3], M[3]С[2] and M[3]С carbides existence domain by the [alpha]-and [gamma]-phases. The temperature field numerical calculations, forming in the steel superficial layer in the case of the electron beam irradiation, have been carried out. It has been demonstrated that the peak temperature, being achieved on the sample surface towards the end of the impulse effect, is below steel melting temperature at electrons beam energy density 10 J/cm{2} regardless of the electrons beam pulse duration (50-200 ms). The peak temperature on the irradiation surface is equal to the steel boiling temperature at electrons beam energy density (20-30) J/cm{2} and at pulse duration 50 [mu]s. The peak temperature on the irradiation surface achieves and increases the steel melting temperature at pulse duration 200 [mu]s. 
330 |a The AISI 321 and AISI 420 steel surface irradiation has been carried out by the intense pulse electron beam. The studies have been made and the nanostructured polyphaser superficial layers formation laws analysis have been done. It has been established that the steel electronic-beam treatment is accompanied by the М[23]С[6] ((Cr, Fe,)[23]C[6]) composition initial carbide phase particles solution, by the carbon and chromium atoms superficial layer crystal lattice saturation, by the submicron sizes and dendritic crystallization cells formation, by the titanium carbide and chromium carbide nanosized particles abstraction. The mechanical and tribological tests of the AISI 321 and AISI 420 steel samples, irradiated by the intense pulse electron beam, have been done. It has been detected that the superficial layer hardness increases in 1.5 times and the superficial layer wear resistance increases in 1.5 times. The friction coefficient decreases in 1.6 times. The microhardness increases in 1.5 times. The wear resistance increases in 3.2 times. The friction coefficient reduces in 2.3 times. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 0 |0 (RuTPU)RU\TPU\network\11477  |t Key Engineering Materials  |o Scientific Journal 
463 0 |0 (RuTPU)RU\TPU\network\26820  |t Vol. 781 : Radiation-Thermal Effects and Processes in Inorganic Materials  |o The XIII International Conference, November 9–14, 2017, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; ed. S. A. Gyngazov (Ghyngazov)  |v [P. 64-69]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a friction coefficient 
610 1 |a high-chromium stainless steel 
610 1 |a intense pulse electron beam 
610 1 |a microhardness 
610 1 |a phase composition 
610 1 |a state diagram 
610 1 |a structure 
610 1 |a wear resistance 
610 1 |a коэффициент трения 
610 1 |a нержавеющие стали 
610 1 |a электронные пучки 
610 1 |a импульсные пучки 
610 1 |a микротвердость 
610 1 |a фазовый состав 
610 1 |a диаграммы состояний 
610 1 |a структуры 
610 1 |a износостойкость 
701 1 |a Ivanov  |b Yurii  |g Yu. 
701 1 |a Klopotov  |b V. D.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1950-  |g Vladimir Dmitrievich  |3 (RuTPU)RU\TPU\pers\34636  |9 17998 
701 1 |a Klopotov  |b A. A.  |g Anatolii 
701 1 |a Petrikova  |b E. A.  |g Elizaveta 
701 1 |a Abzaev  |b Yu.  |g Yuriy 
701 1 |a Ivanova  |b O. V.  |g Olga 
701 1 |a Teresov  |b A. D.  |g Anton 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Школа базовой инженерной подготовки  |b Отделение математики и информатики  |3 (RuTPU)RU\TPU\col\23555 
801 2 |a RU  |b 63413507  |c 20181121  |g RCR 
856 4 |u https://doi.org/10.4028/www.scientific.net/KEM.781.64 
942 |c CF