Advanced composite alloys for constructional parts of robots

Bibliografske podrobnosti
Parent link:IOP Conference Series: Materials Science and Engineering
Vol. 363 : Cognitive Robotics.— 2018.— [012032, 5 p.]
Korporativna značnica: Национальный исследовательский Томский политехнический университет (ТПУ)
Drugi avtorji: Issin D. K., Zholdubayeva Zh. D., Neshina Y. G., Alkina A. D., Khuangan N., Rahimova G. M.
Izvleček:Title screen
In recent years all over the world special attention has been paid to the development and implementation of nanostructured materials possessing unique properties and opening fascinating prospects for the development of technical progress in various fields of human activities. A special place can be given to the development of service robots, the market of which is actively developing. There is problem associated mainly with the lack of heatstrengthened alloys which consists in low thermal stability of the alloy properties under the conditions of elevated variable temperatures and loads. The article presents studies to assess the effect of composition, the amounts of refractory nanoscale particles and methods for their introduction into the melt on the structure and properties in nanostructured composite aluminum alloys. The powders of metals, alloys, as well as silicon carbide and aluminum oxide were used to produce the nanostructured powder composite materials. As a result of the research, NPCM compositions containing micro-size particles of transition metals that are carriers of nanosized reinforcing particles and initiators of the formation of an intermetallide of endogenous origin in a melt.
Jezik:angleščina
Izdano: 2018
Teme:
Online dostop:https://doi.org/10.1088/1757-899X/363/1/012032
http://earchive.tpu.ru/handle/11683/51789
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658789
Opis
Izvleček:Title screen
In recent years all over the world special attention has been paid to the development and implementation of nanostructured materials possessing unique properties and opening fascinating prospects for the development of technical progress in various fields of human activities. A special place can be given to the development of service robots, the market of which is actively developing. There is problem associated mainly with the lack of heatstrengthened alloys which consists in low thermal stability of the alloy properties under the conditions of elevated variable temperatures and loads. The article presents studies to assess the effect of composition, the amounts of refractory nanoscale particles and methods for their introduction into the melt on the structure and properties in nanostructured composite aluminum alloys. The powders of metals, alloys, as well as silicon carbide and aluminum oxide were used to produce the nanostructured powder composite materials. As a result of the research, NPCM compositions containing micro-size particles of transition metals that are carriers of nanosized reinforcing particles and initiators of the formation of an intermetallide of endogenous origin in a melt.
DOI:10.1088/1757-899X/363/1/012032