Effect of Dual Surface Cooling on the Temperature Distribution of a Nuclear Fuel Pellet

Dades bibliogràfiques
Parent link:Key Engineering Materials: Scientific Journal
Vol. 769 : High Technology: Research and Applications (HTRA 2017).— 2018.— [296-310]
Autor principal: Odii Christopher Joseph
Autor corporatiu: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Altres autors: Agyekum Ephraim Bonah, Afornu B. K. Bright Kwame
Sumari:Title screen
Heat removal from nuclear reactor core has been one of the major Engineering considerations in the construction of nuclear power plant. At the center of this consideration is the nuclear fuel pellet whose burning efficiency determines the rate of heat transfer to the coolant. This research, focuses on the study of temperature distribution of solid fuel, temperature distribution of annular fuel with external cooling and the temperature distribution of annular fuel with internal and external cooling. We analyzed the different distribution and made a conclusion on the possibility of improving temperature management of Nuclear fuel rod, by designing fuel pellets based on this geometrical and thermal Analysis. To date, a lot of studies has been done on the thermal and geometrical properties of Nuclear fuel pellet, it is observed that annular fuel pellet with simulteneous internal and external cooling can achieve better temperature distribution which leads to high linear heat generation rate, thus generating more power in the design [1]. It has also been observed that annular fuel pellets has low fission gas release [10]. In large LOCA, the peak cladding temperature of annular fuel is about 600 which is significantly less than that of solid fuel (920 ), this is due to the fact that annular fuel cladding has lower initial temperature and the thinner annular fuel can be cooled more efficiently than the solid fuel. One of drawbacks of annular fuel technology is “the fuel gap conductance assymmetry” which is caused by outward thermal expansion, it has a potential effect on the MDNBR (Minimum Departure from Nucleate Boiling Ratio), which is the minimum ratio of the critical to actual heat flux found in the core [10]. In this model, we used the ceramic fuel pellet of UO2 as our case study. All the parameters in this model are assumed parameters of UO2. The Heat Transfer tool (ANSYS APDL) was used to validate the Analytical Model of this research.
Режим доступа: по договору с организацией-держателем ресурса
Publicat: 2018
Matèries:
Accés en línia:https://doi.org/10.4028/www.scientific.net/KEM.769.296
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658652

MARC

LEADER 00000nla2a2200000 4500
001 658652
005 20231101135032.0
035 |a (RuTPU)RU\TPU\network\26609 
035 |a RU\TPU\network\26607 
090 |a 658652 
100 |a 20181029a2018 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of Dual Surface Cooling on the Temperature Distribution of a Nuclear Fuel Pellet  |f Odii Christopher Joseph, Agyekum Ephraim Bonah, B. K. Afornu 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Heat removal from nuclear reactor core has been one of the major Engineering considerations in the construction of nuclear power plant. At the center of this consideration is the nuclear fuel pellet whose burning efficiency determines the rate of heat transfer to the coolant. This research, focuses on the study of temperature distribution of solid fuel, temperature distribution of annular fuel with external cooling and the temperature distribution of annular fuel with internal and external cooling. We analyzed the different distribution and made a conclusion on the possibility of improving temperature management of Nuclear fuel rod, by designing fuel pellets based on this geometrical and thermal Analysis. To date, a lot of studies has been done on the thermal and geometrical properties of Nuclear fuel pellet, it is observed that annular fuel pellet with simulteneous internal and external cooling can achieve better temperature distribution which leads to high linear heat generation rate, thus generating more power in the design [1]. It has also been observed that annular fuel pellets has low fission gas release [10]. In large LOCA, the peak cladding temperature of annular fuel is about 600 which is significantly less than that of solid fuel (920 ), this is due to the fact that annular fuel cladding has lower initial temperature and the thinner annular fuel can be cooled more efficiently than the solid fuel. One of drawbacks of annular fuel technology is “the fuel gap conductance assymmetry” which is caused by outward thermal expansion, it has a potential effect on the MDNBR (Minimum Departure from Nucleate Boiling Ratio), which is the minimum ratio of the critical to actual heat flux found in the core [10]. In this model, we used the ceramic fuel pellet of UO2 as our case study. All the parameters in this model are assumed parameters of UO2. The Heat Transfer tool (ANSYS APDL) was used to validate the Analytical Model of this research. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 0 |0 (RuTPU)RU\TPU\network\11477  |t Key Engineering Materials  |o Scientific Journal 
463 0 |0 (RuTPU)RU\TPU\network\26539  |t Vol. 769 : High Technology: Research and Applications (HTRA 2017)  |o The VI International Science and Engineering Conference, November 27-29, 2017, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. G. E. Osokin ; E. A. Kulinich  |v [296-310]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Annular 
610 1 |a Ansys APDL 
610 1 |a Cladding 
610 1 |a Cooling 
610 1 |a Distribution 
610 1 |a DUAL 
610 1 |a Flux 
610 1 |a Fuel 
610 1 |a Gradient 
610 1 |a Heat 
610 1 |a Inner 
610 1 |a MDNBR 
610 1 |a Modelling 
610 1 |a Nuclear 
610 1 |a Outer 
610 1 |a Pellet 
610 1 |a RADIUS 
610 1 |a Thermal 
610 1 |a облицовки 
610 1 |a флюсы 
610 1 |a охлаждение 
610 1 |a топливо 
610 1 |a грануляторы 
610 1 |a температура 
700 0 |a Odii Christopher Joseph 
701 0 |a Agyekum Ephraim Bonah 
701 1 |a Afornu  |b B. K.  |c Specialist in the field of nuclear technologies  |c Engineer of Tomsk Polytechnic University  |f 1989-  |g Bright Kwame  |2 stltpush  |3 (RuTPU)RU\TPU\pers\46933 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |h 7865  |2 stltpush  |3 (RuTPU)RU\TPU\col\23549 
801 2 |a RU  |b 63413507  |c 20210811  |g RCR 
856 4 |u https://doi.org/10.4028/www.scientific.net/KEM.769.296 
942 |c CF