Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography

Bibliographic Details
Parent link:The International Journal of Cardiovascular Imaging
Vol. 34, iss. 7.— 2018.— [15 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий, Национальный исследовательский Томский политехнический университет (ТПУ) Управление проректора по научной работе и инновациям (НРиИ) Центр RASA в Томске Лаборатория дизайна медицинских изделий (Лаб. ДМИ)
Other Authors: Danilov V. V. Vyacheslav Vladimirovich, Skirnevsky I. P. Igor Petrovich, Gerget O. M. Olga Mikhailovna, Kolpashchikov D. Yu. Dmitry Yurjevich, Shelomentsev E. E. Egor Evgenjevich, Vasiljev N. V. Nikolay Vladimirovich
Summary:Title screen
The present study aimed to present a workflow algorithm for automatic processing of 2D echocardiography images. The workflow was based on several sequential steps. For each step, we compared different approaches. Epicardial 2D echocardiography datasets were acquired during various open-chest beating-heart surgical procedures in three porcine hearts. We proposed a metric called the global index that is a weighted average of several accuracy coefficients, indices and the mean processing time. This metric allows the estimation of the speed and accuracy for processing each image. The global index ranges from 0 to 1, which facilitates comparison between different approaches. The second step involved comparison among filtering, sharpening and segmentation techniques. During the noise reduction step, we compared the median filter, total variation filter, bilateral filter, curvature flow filter, non-local means filter and mean shift filter. To clarify the endocardium borders of the right heart, we used the linear sharpen. Lastly, we applied watershed segmentation, clusterisation, region-growing, morphological segmentation, image foresting segmentation and isoline delineation. We assessed all the techniques and identified the most appropriate workflow for echocardiography image segmentation of the right heart. For successful processing and segmentation of echocardiography images with minimal error, we found that the workflow should include the total variation filter/bilateral filter, linear sharpen technique, isoline delineation/region-growing segmentation and morphological post-processing. We presented an efficient and accurate workflow for the precise diagnosis of cardiovascular diseases. We introduced the global index metric for image pre-processing and segmentation estimation.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.1007/s10554-018-1314-4
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=658208

MARC

LEADER 00000naa0a2200000 4500
001 658208
005 20251127124146.0
035 |a (RuTPU)RU\TPU\network\25476 
090 |a 658208 
100 |a 20180626d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography  |f V. V. Danilov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 33 tit.] 
330 |a The present study aimed to present a workflow algorithm for automatic processing of 2D echocardiography images. The workflow was based on several sequential steps. For each step, we compared different approaches. Epicardial 2D echocardiography datasets were acquired during various open-chest beating-heart surgical procedures in three porcine hearts. We proposed a metric called the global index that is a weighted average of several accuracy coefficients, indices and the mean processing time. This metric allows the estimation of the speed and accuracy for processing each image. The global index ranges from 0 to 1, which facilitates comparison between different approaches. The second step involved comparison among filtering, sharpening and segmentation techniques. During the noise reduction step, we compared the median filter, total variation filter, bilateral filter, curvature flow filter, non-local means filter and mean shift filter. To clarify the endocardium borders of the right heart, we used the linear sharpen. Lastly, we applied watershed segmentation, clusterisation, region-growing, morphological segmentation, image foresting segmentation and isoline delineation. We assessed all the techniques and identified the most appropriate workflow for echocardiography image segmentation of the right heart. For successful processing and segmentation of echocardiography images with minimal error, we found that the workflow should include the total variation filter/bilateral filter, linear sharpen technique, isoline delineation/region-growing segmentation and morphological post-processing. We presented an efficient and accurate workflow for the precise diagnosis of cardiovascular diseases. We introduced the global index metric for image pre-processing and segmentation estimation. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t The International Journal of Cardiovascular Imaging 
463 |t Vol. 34, iss. 7  |v [15 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a эхокардиография 
610 1 |a шумоподавление 
610 1 |a сегментирование 
610 1 |a оценка качества 
610 1 |a изображения 
701 1 |a Danilov  |b V. V.  |c specialist in the field of informatics and computer technology  |c engineer of Tomsk Polytechnic University  |f 1989-  |g Vyacheslav Vladimirovich  |3 (RuTPU)RU\TPU\pers\37831 
701 1 |a Skirnevsky  |b I. P.  |c specialist in the field of automation and computer systems  |c educational master Tomsk Polytechnic University  |f 1989-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\35105 
701 1 |a Gerget  |b O. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University, Doctor of Sciences  |f 1974-  |g Olga Mikhailovna  |3 (RuTPU)RU\TPU\pers\31430  |9 15593 
701 1 |a Kolpashchikov  |b D. Yu.  |c specialist in the field of engineering  |c engineer of Tomsk Polytechnic University  |f 1992-  |g Dmitry Yurjevich  |3 (RuTPU)RU\TPU\pers\41099 
701 1 |a Shelomentsev  |b E. E.  |g Egor Evgenjevich 
701 1 |a Vasiljev  |b N. V.  |g Nikolay Vladimirovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |3 (RuTPU)RU\TPU\col\23515 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Управление проректора по научной работе и инновациям (НРиИ)  |b Центр RASA в Томске  |b Лаборатория дизайна медицинских изделий (Лаб. ДМИ)  |3 (RuTPU)RU\TPU\col\22092 
801 2 |a RU  |b 63413507  |c 20180724  |g RCR 
856 4 |u https://doi.org/10.1007/s10554-018-1314-4 
942 |c CF